Abstract

Up-conversion luminescence processes of Tb3+ ions in GeO2-Ga2O3-BaO glass system were investigated under diode-laser excitation of Yb3+. Emission bands at 489, 543, 586 and 621nm corresponding to 5D47FJ (J = 6, 5, 4, 3) transitions and luminescence at 381, 415, 435 nm resulting from 5D3, 5G67FJ (J = 6, 5, 4) transitions of Tb3+ were observed. The highest up-conversion emission intensity was obtained for 0.7Yb2O3/0.7Tb2O3 co-doped lead-free germanate glass. The energy transfer coefficient was determined based on fitting of calculations and experimental results by least squares method. The energy transfer coefficient amounts to Cf = 1.5∙10−33 cm6/s while quantum efficiency of the Yb3+→Tb3+ energy transfer is 12%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lande, S. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett.22(22), 1722–1724 (1997).
    [CrossRef] [PubMed]
  2. P. Xie and T. R. Gosnell, “Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions,” Opt. Lett.20(9), 1014–1016 (1995).
    [CrossRef] [PubMed]
  3. Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
    [CrossRef] [PubMed]
  4. Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
    [CrossRef]
  5. Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
    [CrossRef]
  6. X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
    [CrossRef]
  7. P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
    [CrossRef]
  8. Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
    [CrossRef]
  9. A. Lin, X. Liu, P. R. Watekar, H. Guo, B. Peng, W. Wei, M. Lu, W. T. Han, and J. Toulouse, “Intense green upconversion emission in Tb3+/Yb3+ codoped alumino-germano-silicate optical fibers,” Appl. Opt.49(9), 1671–1675 (2010).
    [CrossRef] [PubMed]
  10. L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
    [CrossRef]
  11. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
    [CrossRef]
  12. M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).
  13. Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
    [CrossRef]
  14. J. Ueda and S. Tanabe, “Sensitization mechanisms of 1μm luminescence in Tb3+-Yb3+ co-doped borate glasses,” Phys. Status Solidi., A Appl. Mater. Sci.208(8), 1827–1832 (2011).
    [CrossRef]
  15. Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
    [CrossRef]
  16. I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
    [CrossRef]
  17. V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
    [CrossRef]
  18. A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
    [CrossRef]
  19. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
    [CrossRef] [PubMed]
  20. B. Zhou, H. Lin, B. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  21. Y. Messaddeq, S. J. L. Ribeiro, E. Pecoraro, and E. M. Nascimento, “Glass for optical amplifier fiber,” US Patent No 7,773,647 B2 (Aug. 10, 2010)
  22. D. M. McPherson and S. C. Murray, “Germanate glass for mid-infrared medical optical fiber,” US Patent No 5,491,767 (Feb. 13, 1996)
  23. D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010).
    [CrossRef] [PubMed]
  24. B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012).
    [CrossRef] [PubMed]
  25. J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin, “Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery,” Opt. Express21(1), 1030–1040 (2013).
    [CrossRef] [PubMed]
  26. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett.32(6), 638–640 (2007).
    [CrossRef] [PubMed]
  27. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” JOSA B26(2), 357–363 (2009).
    [CrossRef]
  28. J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
    [CrossRef]
  29. R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
    [CrossRef]
  30. N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
    [CrossRef]
  31. E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).
  32. T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” JOSA B26(4), 819–829 (2009).
    [CrossRef]
  33. T. Yamashita, Y. Ohishi, “Energy transfer and gain analysis for Tb3+-Yb3+ co-doped silicate glasses under the 0.98 µm excitation,” OSA / CLEO/QELS, 1–2 (2008).

2013

2012

2011

B. Zhou, H. Lin, B. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
[CrossRef]

J. Ueda and S. Tanabe, “Sensitization mechanisms of 1μm luminescence in Tb3+-Yb3+ co-doped borate glasses,” Phys. Status Solidi., A Appl. Mater. Sci.208(8), 1827–1832 (2011).
[CrossRef]

2010

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, H. Guo, B. Peng, W. Wei, M. Lu, W. T. Han, and J. Toulouse, “Intense green upconversion emission in Tb3+/Yb3+ codoped alumino-germano-silicate optical fibers,” Appl. Opt.49(9), 1671–1675 (2010).
[CrossRef] [PubMed]

D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010).
[CrossRef] [PubMed]

2009

T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” JOSA B26(4), 819–829 (2009).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” JOSA B26(2), 357–363 (2009).
[CrossRef]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

2008

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

2007

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
[CrossRef]

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett.32(6), 638–640 (2007).
[CrossRef] [PubMed]

2003

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

2001

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

1998

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

1997

1995

Afonso, A. C. M.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

Akella, A.

Arai, Y.

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

Cao, W.

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
[CrossRef] [PubMed]

Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
[CrossRef] [PubMed]

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Cassanjes, F. C.

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Chen, B.

Chen, B. J.

Chen, D.

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Chen, G.

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

Cheng, J.

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

da Costa, B. J.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

de Araujo, C. B.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

de Araujo, M. T.

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Delben, J. R.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

Ding, J.

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Dong, G.

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

dos Santos, P. V.

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Duan, Q.

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
[CrossRef] [PubMed]

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Giri, N. K.

N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
[CrossRef]

Gomes, A. S. L.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

Gong, H.

Gosnell, T. R.

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Guo, H.

Han, W. T.

Hesselink, L.

Huang, L.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Huang, P.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Jha, A.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Jiang, S.

Jose, G.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Jose, R.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Lakshminarayana, G.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Lande, D.

Lin, A.

Lin, G.

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Lin, H.

Liu, X.

A. Lin, X. Liu, P. R. Watekar, H. Guo, B. Peng, W. Wei, M. Lu, W. T. Han, and J. Toulouse, “Intense green upconversion emission in Tb3+/Yb3+ codoped alumino-germano-silicate optical fibers,” Appl. Opt.49(9), 1671–1675 (2010).
[CrossRef] [PubMed]

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Lu, M.

Martín, I. R.

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Martins, E.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

Mendez-Ramos, J.

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Messaddeq, Y.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

Molina, P.

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

Nascimento, J. F.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

Neurgaonkar, R. R.

Ohishi, Y.

T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” JOSA B26(4), 819–829 (2009).
[CrossRef]

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Orlov, S. S.

Pan, Y. X.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Peng, B.

Peng, M.

Pun, E. Y. B.

Qian, B.

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

Qiao, Y.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Qin, F.

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
[CrossRef] [PubMed]

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Qiu, J.

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Rai, D. K.

R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
[CrossRef]

N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
[CrossRef]

Rai, S. B.

R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
[CrossRef]

N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
[CrossRef]

Ribeiro, S. J. L.

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Richards, B.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Rodriguez, V. D.

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Scarnera, V.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Shen, L. F.

Shimamura, K.

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

Stacey, C.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Suzuki, T.

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Sensitization mechanisms of 1μm luminescence in Tb3+-Yb3+ co-doped borate glasses,” Phys. Status Solidi., A Appl. Mater. Sci.208(8), 1827–1832 (2011).
[CrossRef]

Torres, M. E.

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Toulouse, J.

Ueda, J.

J. Ueda and S. Tanabe, “Sensitization mechanisms of 1μm luminescence in Tb3+-Yb3+ co-doped borate glasses,” Phys. Status Solidi., A Appl. Mater. Sci.208(8), 1827–1832 (2011).
[CrossRef]

Vasyliev, V.

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

Verma, R. K.

R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
[CrossRef]

Vermelho, M. V. D.

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

Villora, E. G.

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

Wang, D.

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Wang, P.

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

Wang, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Watekar, P. R.

Wei, W.

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Wondraczek, L.

Wu, J.

Xie, P.

Xu, W.

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Xu, Y.

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

Yamashita, T.

T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” JOSA B26(4), 819–829 (2009).
[CrossRef]

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

Yanes, A. C.

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

Yang, C. H.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Yang, D. L.

D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010).
[CrossRef] [PubMed]

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” JOSA B26(2), 357–363 (2009).
[CrossRef]

Yang, J.

Yang, Z.

Yao, Z.

Ye, S.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Yu, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Zhai, B.

Zhang, N.

Zhang, Q.

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Zhang, Z.

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

Q. Duan, F. Qin, Z. Zhang, W. Cao, and W. Cao, “Quantum cutting mechanism in NaYF4:Tb3+, Yb3+.,” Opt. Lett.37(4), 521–523 (2012).
[CrossRef] [PubMed]

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

Zhao, X.

Zhou, B.

Zhou, Q.

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

Zhu, B.

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Zong, J.

Appl. Opt.

Appl. Phys. B

N. K. Giri, D. K. Rai, and S. B. Rai, “UV-visible emission in Tb-Yb codoped tellurite glass on 980-nm excitation,” Appl. Phys. B89(2-3), 345–348 (2007).
[CrossRef]

Q. Zhang, G. Chen, Y. Xu, X. Liu, B. Qian, G. Dong, Q. Zhou, J. Qiu, and D. Chen, “Abnormal upconversion luminescence from Yb3+ doped and Tb3+/Yb3+ codoped high silica glasses induced by intrinsic optical bistability,” Appl. Phys. B98(2-3), 261–265 (2010).
[CrossRef]

X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, “Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses,” Appl. Phys. B96(1), 51–55 (2009).
[CrossRef]

Appl. Phys. Lett.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimentional (YbxGd1-x)Al3(BO3)4:Tb3+,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett.90(13), 131116 (2007).
[CrossRef]

J. Alloy. Comp.

J. Ding, Q. Zhang, J. Cheng, X. Liu, G. Lin, J. Qiu, and D. Chen, “Multicolor upconversion luminescence from RE3+-Yb3+ (RE = Er, Tm, Tb) codoped LaAlGe2O7 glasses,” J. Alloy. Comp.495(1), 205–208 (2010).
[CrossRef]

R. K. Verma, D. K. Rai, and S. B. Rai, “Investigation of structural properties and its effect on optical properties: Yb3+/Tb3+ codoped in aluminum silicate glass,” J. Alloy. Comp.509(18), 5591–5595 (2011).
[CrossRef]

J. Appl. Phys.

Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys.110(11), 113503 (2011).
[CrossRef]

P. Molina, V. Vasyliev, E. G. Villora, and K. Shimamura, “Tb3+-Yb3+ cooperative down and up conversion processes in Tb0.81Ca0.19F2.81:Yb3+ single crystals,” J. Appl. Phys.110(12), 123527 (2011).
[CrossRef]

Y. Arai, T. Yamashita, T. Suzuki, and Y. Ohishi, “Upconversion properties of Tb3+-Yb3+ codoped fluorophosphate glasses,” J. Appl. Phys.105(8), 083105 (2009).
[CrossRef]

I. R. Martín, A. C. Yanes, J. Mendez-Ramos, M. E. Torres, and V. D. Rodriguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys.89(5), 2520–2524 (2001).
[CrossRef]

J. Lumin

M. V. D. Vermelho, P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, F. C. Cassanjes, S. J. L. Ribeiro, and Y. Messaddeq, “Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass,” J. Lumin. 102-103, 762–767 (2003).

J. Non-Cryst. Solids

A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids354(2-9), 509–514 (2008).
[CrossRef]

J. Phys. Chem. C

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

JOSA B

Q. Duan, F. Qin, P. Wang, Z. Zhang, and W. Cao, “Upconversion emission efficiency of Tb3+-Yb3+ co-doped glass,” JOSA B30(2), 456–459 (2013).
[CrossRef]

T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” JOSA B26(4), 819–829 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” JOSA B26(2), 357–363 (2009).
[CrossRef]

Opt. Commun.

E. Martins, C. B. de Araujo, J. R. Delben, A. S. L. Gomes, B. J. da Costa, and Y. Messaddeq, “Cooperative frequency upconversion in Yb3+–Tb3+ codoped fluoroindate glass,” Opt. Commun.158(1-6), 61–64 (1998).

Opt. Express

Opt. Lett.

Opt. Mater.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater.33(2), 159–163 (2010).
[CrossRef]

Phys. Status Solidi., A Appl. Mater. Sci.

J. Ueda and S. Tanabe, “Sensitization mechanisms of 1μm luminescence in Tb3+-Yb3+ co-doped borate glasses,” Phys. Status Solidi., A Appl. Mater. Sci.208(8), 1827–1832 (2011).
[CrossRef]

Other

Y. Messaddeq, S. J. L. Ribeiro, E. Pecoraro, and E. M. Nascimento, “Glass for optical amplifier fiber,” US Patent No 7,773,647 B2 (Aug. 10, 2010)

D. M. McPherson and S. C. Murray, “Germanate glass for mid-infrared medical optical fiber,” US Patent No 5,491,767 (Feb. 13, 1996)

T. Yamashita, Y. Ohishi, “Energy transfer and gain analysis for Tb3+-Yb3+ co-doped silicate glasses under the 0.98 µm excitation,” OSA / CLEO/QELS, 1–2 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Emission spectra for Yb3+/Tb3+ co-doped germanate glasses. Inset shows dependence of upconversion emission intensity of 0.7Yb3+/0.7Tb3+ co-doped germanate glass on excitation power (λp = 976 nm).

Fig. 2
Fig. 2

Simplified energy level diagram of Tb3+/Yb3+ ion and possible upconversion luminescence mechanisms.

Fig. 3
Fig. 3

Typical luminescence decay from the 2F5/2 state of Yb3+ in glass co-doped with 0.7Yb2O3/0.7Tb2O3.

Fig. 4
Fig. 4

Lifetime for 2F5/2 state of Yb3+ and energy transfer efficiency as a function of Tb3+ concentration.

Fig. 5
Fig. 5

Experimental and calculated decay curve of Tb3+: 5D47F5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 × Yb 3 + ( 2 F 5 / 2 ) + Tb 3 + ( 7 F 6 ) 2 × Yb 3 + ( 2 F 7 / 2 ) + Tb 3 + ( 5 D 4 )
Tb 3 + ( 5 D 4 ) + Yb 3 + ( 2 F 5 / 2 ) + h ν relaxation , Tb 3 + ( 5 D 3 )                
d n Yb1 dt = R Yb1 n Yb1 + W Yb n Yb2 d n Yb2 dt = R Yb1 n Yb1 W Yb n Yb2 C f n Yb2 2 n Tb1 d n Tb1 dt = C f n Yb2 2 n Tb1 + W Tb n Tb2 d n Tb2 dt = W Tb n Tb2 +2 C f n Yb2 2 n Tb1 N Yb = n Yb1 + n Yb2 N Tb = n Tb1 + n Tb2

Metrics