Abstract

This paper focuses on the determination of the bandgap energy bowing parameter of strained and relaxed InxGa1−xN layers. Samples are grown by metal organic vapor phase epitaxy on GaN template substrate for indium compositions in the range of 0<x<0.25. The bangap emission energy is characterized by cathodoluminescence and the indium composition as well as the strain state are deduced from high resolution X-ray diffraction measurements. The experimental variation of the bangap emission energy with indium content can be described by the standard quadratic equation, fitted using a relative least square method and qualified with a chi square test. Our approach leads to values of the bandgap energy bowing parameter equal to 2.87±0.20eV and 1.32±0.28eV for relaxed and strained layers (determined for the first time since the revision of the InN bandgap energy in 2002), respectively. The corresponding modified Vegard’s laws describe accurately the indium content dependence of the bandgap emission energy in InGaN alloy and for the whole range of indium content. Finally, as an example of application, 3D mapping of indium content in a thick InGaN layer is deduced from bandgap energy measurements using cathodoluminescence and a corresponding hyperspectral map.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011).
    [CrossRef]
  2. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).
  3. J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013).
    [CrossRef]
  4. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
    [CrossRef]
  5. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
    [CrossRef]
  6. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
  7. X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
    [CrossRef]
  8. M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
    [CrossRef]
  9. M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
    [CrossRef]
  10. M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
    [CrossRef]
  11. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
    [CrossRef]
  12. C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
    [CrossRef]
  13. P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
    [CrossRef]
  14. W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
    [CrossRef]
  15. Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
    [CrossRef]
  16. F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
    [CrossRef]
  17. J-P. Nougier, Méthode des calculs numériques. Volume 2, Fonctions équations aux dérivées (Hermes Science Publications, 2001).
  18. S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
    [CrossRef]
  19. M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009).
    [CrossRef]
  20. M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
    [CrossRef]
  21. Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
    [CrossRef]
  22. Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
    [CrossRef]
  23. A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
    [CrossRef] [PubMed]
  24. M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
    [CrossRef]
  25. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
    [CrossRef]
  26. M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
    [CrossRef]
  27. M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
    [CrossRef]
  28. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
    [CrossRef]
  29. K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
    [CrossRef] [PubMed]
  30. K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
    [CrossRef]
  31. F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008).
    [CrossRef]
  32. W. Walukiewicz, “Narrow bandgap group III-nitride alloys,” Physica E20, 300–307 (2004).
    [CrossRef]
  33. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
    [CrossRef]
  34. Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
    [CrossRef]
  35. H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
    [CrossRef]

2013 (4)

J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013).
[CrossRef]

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

2012 (3)

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

2011 (3)

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

2009 (4)

X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009).
[CrossRef]

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

2008 (3)

F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008).
[CrossRef]

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

2007 (1)

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

2006 (1)

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

2005 (1)

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

2004 (3)

W. Walukiewicz, “Narrow bandgap group III-nitride alloys,” Physica E20, 300–307 (2004).
[CrossRef]

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

2003 (2)

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

2002 (4)

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

2001 (1)

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

1999 (2)

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

1998 (1)

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

1994 (1)

A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
[CrossRef] [PubMed]

Abid, M.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

Ahaitouf, A.

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Al-Heji, A. A.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Alves, E.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Alvesd, E.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Araki, T.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Averbeck, R.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Bedair, S. M.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Bell, A.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Briot, O.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Cai, J.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Cai, X.

X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Calle, F.

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Calleja, E.

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Chen, X.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Chua, S. J.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Correia, M. R.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Cruz, S. C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

DenBaars, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

DenBaars, S. P.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Djebbour, Z.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

El Gmili, Y.

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

El- Masry, N. A.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Farrell, R. M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Feezell, D. F.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Feng, Z. C.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Fernanchez-Garcia, S.

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Fischer, A.

A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
[CrossRef] [PubMed]

Franco, N.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Frandonc, J.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Fujito, K.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Gautier, S

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Gautier, S.

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Geng, L.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Gervais, P. O.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Giesen, Ch.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Gil, B.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Gilg, B.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Gorge, V.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Gupta, Y. M.

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Hardy, M. T.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Harima, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

Hashimoto, A.

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Hassan, Z.

F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008).
[CrossRef]

He, L.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Hester, J.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Heuken, M.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Hsu, P. S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Huang, D.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Hurni, C. A.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

Iberlk, A.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Islam, M. J.

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Islam, M. R.

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Iza, M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Jasinski, J.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Jobst, B.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Johnson, N. M.

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Kaysir, M. R.

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Keller, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Kneissl, M.

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

Koslow, I.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Kuhne, H.

A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
[CrossRef] [PubMed]

Kurimoto, E.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

Kurouchi, M.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Lang, J. R.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

Largeau, L

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Lee, K. Y.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Leese, T.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Leyer, M.

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

Liliental-Weber, Z.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Little, B. D.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Liu, R.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Liu, S. X.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Liu, W.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Liuf, C.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

Martin, J.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Marui, H.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Matioli, E.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Matsuoka, T.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

Mauguin, O

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

McCluskey, M. D.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

McCluskey, M. M.

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

Meissner, Ch.

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

Mishra, U.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Mishra, U. K.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Molnar, R. J.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Moram, M. A.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009).
[CrossRef]

Morelg, A.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Moret, M.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Morkoç, H.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Moudakir, T

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Moudakir, T.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Nakamura, S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Nakao, M.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

Nanish, Y.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Naoi, H.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Naranjo, F. B.

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Neufeld, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Neufeld, C. J.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Nougier, J-P.

J-P. Nougier, Méthode des calculs numériques. Volume 2, Fonctions équations aux dérivées (Hermes Science Publications, 2001).

O’Donnell, K. P.

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

ODonnell, K. P.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Okamoto, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

Omiya, H.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Orsal, G.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Osler, W. H.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Ougazzaden, A

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Ougazzaden, A.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Ould-Saad, S.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Pantzas, K

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Pantzas, K.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Park, S. S.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Parker, C. A.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Patriarche, G

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Patriarche, G.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Peng, H. Y.

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

Pereira, E.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Pereira, S.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Ploog, KH

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Ponce, P. A.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Pristovsek, M.

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

Reed, M. J.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Richter, H.

A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
[CrossRef] [PubMed]

Riechert, H.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Rinke, P.

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

Roberts, J. C.

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

Romanov, A. E.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Ruffenach, S.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Rushworth, S.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Sa Ferreira, R. A.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Salvestrini, J. P.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Sartel, C.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

Scheffler, M.

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

Schurman, M.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Schuster, M.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Sequeira, A. D.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Shan, W.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Sirenko, A.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Song, J. J.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Speck, J.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Speck, J. S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

Srinivasan, S.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Stall, R. A.

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Stellmach, J.

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

Stevens, M.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Stmmerk, R.

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Succi, M.

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

Sundaram, S.

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Suresh, S

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Suzuki, A.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Sweeney, F.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Tanaka, S.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Tansu, N.

J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011).
[CrossRef]

Toledo, N. G.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Trager-Cowan, C.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

Trampert, A.

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Troadec, D

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Troadec, D.

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Van, C. G.

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

Vickers, M. E.

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009).
[CrossRef]

Visconti, P.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Voss, P L

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Voss, P. L.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Walukiewicz, W.

W. Walukiewicz, “Narrow bandgap group III-nitride alloys,” Physica E20, 300–307 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

Watsonf, I. M.

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

Weisbuch, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Wu, F.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

Yam, F. K.

F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008).
[CrossRef]

Yamaguchi, T.

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Yamamoto, A.

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

Yan, Q.

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

Yang, C. C.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Yang, T. R.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Young, E. C.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

Yu, J. W.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

Yun, F.

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

Zeng, S.

X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Zhang, B.

X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Zhang, J.

J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011).
[CrossRef]

Zhao, J.

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Act. Mat. (1)

Y. El Gmili, G. Orsal, K. Pantzas, T. Moudakir, S. Sundaram, G. Patriarche, J. Hester, A. Ahaitouf, J. P. Salvestrini, and A. Ougazzaden, “Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study,” Act. Mat.61(17), 6587–6596 (2013).
[CrossRef]

Appl. Phys. Lett. (2)

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

X. Cai, S. Zeng, and B. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV bandgap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Appl. Phys. Lett (1)

Q. Yan, P. Rinke, M. Scheffler, and C. G. Van, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett95, 121111 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett.81, 1246–1248 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104(2012).

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small bandgap bowing in In1−x GaxN alloys,” Appl. Phys. Lett., 80, 4741–4743 (2002).
[CrossRef]

C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, and N. A. El- Masry, “Determination of the critical layer thickness in the InGaN/GaN Heterostructures,” Appl. Phys. Lett., 75(18), 2776–2778 (1999).
[CrossRef]

IEEE Photon. J. (1)

J. Zhang and N. Tansu, “Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates,” IEEE Photon. J.5,2600111 (2013).
[CrossRef]

J. Appl. Phys. (3)

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110(2011).
[CrossRef]

W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, “Optical properties of Inx Ga1−xN alloys grown by metalorganic chemical vapor deposition,” J. Appl. Phys., 84, 4452–4458 (1998).
[CrossRef]

M. A. Reshchikov, D. Huang, F. Yun, P. Visconti, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, R. J. Molnar, S. S. Park, and K. Y. Lee, “Unusual luminescence lines in GaN,” J. Appl. Phys., 94(9), 5623–5632 (2003).
[CrossRef]

J. Cryst. Growth (3)

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” J. Cryst. Growth, 310, 4913–4915 (2008).
[CrossRef]

M. Moret, B. Gil, S. Ruffenach, O. Briot, Ch. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys,” J. Cryst. Growth311, 2795–2797 (2009).
[CrossRef]

J. Mater. Sci. Technol. (1)

M. R. Islam, M. R. Kaysir, M. J. Islam, A. Hashimoto, and A. Yamamoto, “MOVPE Growth of Inx Ga1−xN (x ≈ 0.4) and Fabrication of Homo-junction Solar Cells,” J. Mater. Sci. Technol., 29(2), 128–136 (2013).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. Schuster, P. O. Gervais, B. Jobst, W. H. Osler, R. Averbeck, H. Riechert, A. Iberlk, and R. Stmmerk, “Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data,” J. Phys. D: Appl. Phys.32, A56–A60 (1999).
[CrossRef]

Mater. Sci. Eng. B (1)

F. B. Naranjo, S. Fernanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and KH Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng. B, 93, 131–134 (2002).
[CrossRef]

Nanotechnology (1)

K Pantzas, G Patriarche, D Troadec, S Gautier, T Moudakir, S Suresh, L Largeau, O Mauguin, P L Voss, and A Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Opt. Mat. Exp. (1)

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, “Characteristics of the surface microstructures in thick InGaN layers on GaN,” Opt. Mat. Exp.3(8), 1111–1118 (2013).
[CrossRef]

Phys. Rev. B (2)

S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, “Compositional pulling effects in Inx Ga1−xN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” Phys. Rev. B64(20), 205311 (2001).
[CrossRef]

H. Y. Peng, M. M. McCluskey, Y. M. Gupta, M. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B71, 115207 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. Fischer, H. Kuhne, and H. Richter, “New Approach in Equilibrium Theory for Strained Layer Relaxation,” Phys. Rev. Lett., 73, 2712–2715 (1994).
[CrossRef] [PubMed]

Phys. Stat. Sol. (B) (1)

M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanish, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Stat. Sol. (B), 241, 2843–2848 (2004).
[CrossRef]

Phys. Stat. Sol. A (1)

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Stat. Sol. A209, 25–28 (2012).
[CrossRef]

Phys. Stat. Sol. B (1)

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Stat. Sol. B240, 273–284 (2003).
[CrossRef]

Physica E (1)

W. Walukiewicz, “Narrow bandgap group III-nitride alloys,” Physica E20, 300–307 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

M. A. Moram and M. E. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., 72, 036502(2009).
[CrossRef]

Superlattices and Microstructures (2)

M. R. Correia, S. Pereira, E. Pereira, R. A. Sa Ferreira, J. Frandonc, E. Alvesd, I. M. Watsonf, C. Liuf, A. Morelg, and B. Gilg, “Optical studies on the red luminescence of InGaN epilayers,” Superlattices and Microstructures36, 625–632 (2004).
[CrossRef]

F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures43, 1–23 (2008).
[CrossRef]

Thin Sol. Films (1)

Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, “Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition,” Thin Sol. Films498, 118–122 (2006).
[CrossRef]

Other (1)

J-P. Nougier, Méthode des calculs numériques. Volume 2, Fonctions équations aux dérivées (Hermes Science Publications, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1:
Fig. 1:

InGaN surface morphology versus indium composition and epilayer thickness. The theoretical critical layer thickness as deduced from the model of Fisher et al. [23] is also reported (dashed line).

Fig. 2:
Fig. 2:

Examples of typical (114) RSM and ω − 2θ XRD scans obtained in the case of (a–b) a sample from set A (2D morphology and fully strained InGaN layers) and (c–d) a sample from set C (3D morphology and fully relaxed InGaN layers), respectively.

Fig. 3:
Fig. 3:

Summary of RSMs results, showing strain state (for samples of set C only the relaxed sublayer is reported) for all twenty six samples studied in this work.

Fig. 4:
Fig. 4:

Typical room temperature CL spectra obtained at different electron beam energy for samples from set A (a) and set C (b).

Fig. 5:
Fig. 5:

Low In content dependence of the bandgap emission energy in fully strained (a) and relaxed (b) InGaN layers. The solid lines represent the best relative least squares method fit according to Eq. (1). For an InN bandgap energy of 0.7eV, the values of the bowing parameter are equal to 1.32±0.28eV and 2.87±0.2eV for fully strained and relaxed InGaN layers, respectively.

Fig. 6:
Fig. 6:

Extrapolation of the In content dependence of the bandgap energy of InGaN alloys to the whole indium content range according to the different InN bandgap values, for a) strained and b) relaxed layers. Data obtained in this work and by other authors are shown for comparison.

Fig. 7:
Fig. 7:

CL hyperspectral maps (a–b) and corresponding indium content maps (c–d) of a 130nm thick InGaN layer from the set of samples C obtained for electron beam energy of 3keV (b–d, InGaN#2 sublayer) and 7keV (a–c, InGaN#1 sublayer).

Tables (1)

Tables Icon

Table 1: Room temperature values of the emission bandgap energy bowing parameter b obtained in the frame of this work and compared to values reported by different other authors since the InN bandgap re-evaluation. Note that the data of Moret et al. [9] are obtained at 10K.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E NBE InGaN = x × E NBE InN + ( 1 x ) × E NBE GaN b × x × ( 1 x )
x = c mes InGaN c mes GaN c 0 InN c mes GaN
c mes InGaN c 0 InGaN c 0 InGaN = 2 × ν 1 ν a mes InGaN a 0 InGaN a 0 InGaN
x = 1 ν 1 + ν × c mes InGaN c mes GaN c 0 InN c mes GaN
Δ d h k l d h k l ~ cot ( Δ θ h k l ) × Δ θ
h c ln h c B = B × cos λ 0.0836 × x × ( 1 + 1 ν 4 4 π × cos 2 λ × ( 1 + ν ) )
{ b ( strained ) = 1.154 × E g InN + 0.396 b ( relaxed ) = 1.230 × E g InN + 2.010

Metrics