Abstract

By using high-excitation photoluminescence spectroscopy, we explored the emissions due to inelastic exciton-exciton scattering in ZnO nanocrystalline films at low temperature. It was found that the threshold excitation intensity for occurrence of inelastic exciton-exciton scattering dramatically increases as the crystalline size increases. The radiative efficiency of the inelastic exciton-exciton scattering also decreases rapidly as the crystalline size increases from 120 nm to 170 nm and eventually, no emission due to inelastic exciton-exciton scattering can be detected for crystalline size of 220 nm even at low-temperature. We believe that the spatial confinement effect is the most determinative factor influencing the efficiency of inelastic exciton-exciton scattering.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
    [CrossRef]
  2. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
    [CrossRef]
  3. C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
    [CrossRef]
  4. Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
    [CrossRef]
  5. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
    [CrossRef]
  6. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
    [CrossRef]
  7. X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
    [CrossRef]
  8. G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
    [CrossRef]
  9. H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
    [CrossRef]
  10. L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
    [CrossRef]
  11. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  12. M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
    [CrossRef] [PubMed]
  13. T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
    [CrossRef]
  14. T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
    [CrossRef]
  15. A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
    [CrossRef]
  16. A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).
  17. H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
    [CrossRef]
  18. C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
    [CrossRef]
  19. M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
    [CrossRef]
  20. J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
    [CrossRef] [PubMed]
  21. M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
    [CrossRef]
  22. M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
    [CrossRef]
  23. K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
    [CrossRef]
  24. S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
    [CrossRef]
  25. T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
    [CrossRef]
  26. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
    [CrossRef]
  27. A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
    [CrossRef] [PubMed]
  28. Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988).
    [CrossRef] [PubMed]
  29. T. Takagahara, “Nonlocal theory of the size and temperature dependence of the radiative decay rate of excitons in semiconductor quantum dots,” Phys. Rev. B Condens. Matter47(24), 16639–16642 (1993).
    [CrossRef] [PubMed]
  30. B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002).
    [CrossRef]
  31. V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005).
    [CrossRef]
  32. G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
    [CrossRef]
  33. S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
    [CrossRef]

2014

C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
[CrossRef]

2013

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

2012

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
[CrossRef] [PubMed]

T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
[CrossRef]

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

2011

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

2010

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

2008

S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
[CrossRef]

2007

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

2006

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

2005

H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005).
[CrossRef]

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

2004

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

2003

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

2002

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002).
[CrossRef]

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

2001

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

2000

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

1997

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

1993

T. Takagahara, “Nonlocal theory of the size and temperature dependence of the radiative decay rate of excitons in semiconductor quantum dots,” Phys. Rev. B Condens. Matter47(24), 16639–16642 (1993).
[CrossRef] [PubMed]

1989

A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
[CrossRef] [PubMed]

1988

Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988).
[CrossRef] [PubMed]

Adachi, S.

T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
[CrossRef]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ando, A.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Avrutin, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Balandin, A. A.

V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005).
[CrossRef]

Bastek, B.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Bertram, F.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Brandt, M.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Chen, R.

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

Chen, Y. F.

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Chia, C. H.

C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
[CrossRef]

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Chichibu, S. F.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Chiou, J. W.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Chou, W. C.

C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
[CrossRef]

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Christen, J.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Chua, S. J.

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Couteau, C.

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

Dang, S.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

de Posada, E.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Dijkhuis, J. I.

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
[CrossRef] [PubMed]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Donatini, F.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Everitt, H. O.

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Fallert, J.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

Fan, W. C.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Ferret, P.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Firdaus, K.

T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
[CrossRef]

Fonoberov, V. A.

V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005).
[CrossRef]

Fujita, K.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Gadallah, A.-S.

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

Gil, B.

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002).
[CrossRef]

Goto, T.

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Grundmann, M.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Gutowski, J.

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

Han, T. C.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Hauschild, R.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

He, T. C.

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

Hempel, T.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Henry, M. O.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Hong, S.

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

Hsieh, W.-F.

H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Hsu, H. C.

H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Hsu, W. L.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Hu, Y. M.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Huang, F.

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Hwang, J.-S.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Inoguchi, M.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Jang, J. I.

S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
[CrossRef]

Joo, T.

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

Jun, Y. H.

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

Kalt, H.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

Kato, H.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

Kavokin, A. V.

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002).
[CrossRef]

Kawasaki, M.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Kayanuma, Y.

Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988).
[CrossRef] [PubMed]

Ketterson, J. B.

S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Klingshirn, C.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

Ko, H. J.

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Koinuma, H.

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Kubota, M.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Lai, T. Y. J.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Lau, S. P.

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Lérondel, G.

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

Li, H. D.

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Lin, W. W.

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

Lin, Y. C.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Lorenz, M.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Lunney, J. G.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Mani, S.

S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Matsumoto, T.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

Mazur, E.

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

McGlynn, E.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Miyajima, K.

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Miyamoto, K.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

Morkoc, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Mosnier, J.-P.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Murai, S.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Nakamura, A.

A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
[CrossRef] [PubMed]

Nakamura, T.

T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
[CrossRef]

Noltemeyer, M.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Nomenyo, K.

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

Ohtomo, A.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Onuma, T.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Park, W. I.

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

Pernot, J.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Polyakov, A.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Richters, J.-P.

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

Rogers, D. J.

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Sano, M.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

Segawa, Y.

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Shih, T.

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

Sota, T.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Stoof, H. T. C.

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

Sun, H. D.

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

Suzuki, K.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Takagahara, T.

T. Takagahara, “Nonlocal theory of the size and temperature dependence of the radiative decay rate of excitons in semiconductor quantum dots,” Phys. Rev. B Condens. Matter47(24), 16639–16642 (1993).
[CrossRef] [PubMed]

Takagi, H.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Tanaka, K.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Tanaka, N.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

Tang, Z. K.

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Teh, L. K.

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

Thierry, R.

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Tobin, G.

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

Tokizaki, T.

A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
[CrossRef] [PubMed]

Tsai, W. C.

C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
[CrossRef]

Tsukasaki, A.

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

Ucer, K. B.

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

van Lange, A. J.

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

Vanmaekelbergh, D.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
[CrossRef] [PubMed]

Versteegh, M. A. M.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
[CrossRef] [PubMed]

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

Voss, T.

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wilkinson, J.

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

Williams, R. T.

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

Wong, C. C.

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

Wong, G. K. L.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Wu, C.-Y.

H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xiong, G.

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

Yamada, H.

A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
[CrossRef] [PubMed]

Yamamoto, A.

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, H. Y.

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yao, T.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

Yi, G.-C.

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

Yong, A. M.

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Yu, S. F.

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Zhang, X. H.

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

Zhukov, E. A.

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

Zu, P.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Appl. Phys. Lett.

C. H. Chia, T. Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan, and W. C. Chou, “High-excitation effect on photoluminescence of sol-gel ZnO nanopowder,” Appl. Phys. Lett.96(8), 081903 (2010).
[CrossRef]

Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoc, and H. O. Everitt, “Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films,” Appl. Phys. Lett.84(17), 3223–3225 (2004).
[CrossRef]

X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, “Exciton-related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique,” Appl. Phys. Lett.88(19), 191112 (2006).
[CrossRef]

G. Tobin, E. McGlynn, M. O. Henry, J.-P. Mosnier, E. de Posada, and J. G. Lunney, “Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO,” Appl. Phys. Lett.88(7), 071919 (2006).
[CrossRef]

L. K. Teh, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett.91(16), 161116 (2007).
[CrossRef]

A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, “Stimulated emission from ZnO thin films with high optical gain and low loss,” Appl. Phys. Lett.102(17), 171105 (2013).
[CrossRef]

A. Yamamoto, K. Miyajima, T. Goto, H. J. Ko, and T. Yao, “Biexciton luminescence in high-quality ZnO epitaxial thin films,” Appl. Phys. Lett.90(10), 4973–4976 (2001).

H. J. Ko, Y. F. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett.77(4), 537–539 (2000).
[CrossRef]

M. Kubota, T. Onuma, A. Tsukasaki, A. Ohtomo, M. Kawasaki, T. Sota, and S. F. Chichibu, “Recombination dynamics of exciton in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy,” Appl. Phys. Lett.90(14), 141903 (2007).
[CrossRef]

S. Mani, J. I. Jang, and J. B. Ketterson, “Highly efficient nonresonant two-photon absorption in ZnO pellets,” Appl. Phys. Lett.93(4), 041902 (2008).
[CrossRef]

T. C. He, R. Chen, W. W. Lin, F. Huang, and H. D. Sun, “Two-photon-pumped stimulated emission from ZnO single crystal,” Appl. Phys. Lett.99(8), 081902 (2011).
[CrossRef]

T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, “Correlation between grain size and optical properties in zinc oxide thin films,” Appl. Phys. Lett.81(7), 1231–1233 (2002).
[CrossRef]

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett.81(4), 748–750 (2002).
[CrossRef]

V. A. Fonoberov and A. A. Balandin, “Comment on “Giant exciton-light coupling in ZnO quantum dots” [Appl. Phys. Lett. 81, 748 (2002)],” Appl. Phys. Lett.86(22), 226101 (2005).
[CrossRef]

S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett.83(20), 4157 (2003).
[CrossRef]

J. Appl. Phys.

K. Suzuki, M. Inoguchi, K. Fujita, S. Murai, K. Tanaka, N. Tanaka, A. Ando, and H. Takagi, “High-density excitation effect on photoluminescence in ZnO nanoparitcles,” J. Appl. Phys.107(12), 124311 (2010).
[CrossRef]

T. Shih, E. Mazur, J.-P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys.109(4), 043504 (2011).
[CrossRef]

H. C. Hsu, C.-Y. Wu, and W.-F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

J. Cryst. Growth

Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth287(1), 169–179 (2006).
[CrossRef]

J. Lumin.

C. H. Chia, W. C. Tsai, and W. C. Chou, “Pre-heating temperature effect on structural and photoluminescent properties of sol-gel derived ZnO thin films,” J. Lumin.148(4), 111–115 (2014).
[CrossRef]

G. Xiong, J. Wilkinson, K. B. Ucer, and R. T. Williams, “Giant oscillator strength of excitons in bulk and nanostructured systems,” J. Lumin.112(1-4), 1–6 (2005).
[CrossRef]

J. Mater. Res.

M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, A. Polyakov, J. Christen, M. Brandt, M. Lorenz, and M. Grundmann, “Excitonic transport in ZnO,” J. Mater. Res.27(17), 2225–2231 (2012).
[CrossRef]

Nanotechnology

J.-S. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret, and S. Dang, “Carrier depletion and exciton diffusion in a single ZnO nanowire,” Nanotechnology22(47), 475704 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

M. A. M. Versteegh, A. J. van Lange, H. T. C. Stoof, and J. I. Dijkhuis, “Observation of preformed electron-hole Cooper pairs in highly excited ZnO,” Phys. Rev. B85(19), 195206 (2012).
[CrossRef]

T. Nakamura, K. Firdaus, and S. Adachi, “Electron-hole plasma lasing in a ZnO random laser,” Phys. Rev. B86(20), 205103 (2012).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B75(11), 115203 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter

A. Nakamura, H. Yamada, and T. Tokizaki, “Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses,” Phys. Rev. B Condens. Matter40(12), 8585–8588 (1989).
[CrossRef] [PubMed]

Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B Condens. Matter38(14), 9797–9805 (1988).
[CrossRef] [PubMed]

T. Takagahara, “Nonlocal theory of the size and temperature dependence of the radiative decay rate of excitons in semiconductor quantum dots,” Phys. Rev. B Condens. Matter47(24), 16639–16642 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory,” Phys. Rev. Lett.108(15), 157402 (2012).
[CrossRef] [PubMed]

Science

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Solid State Commun.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Excitation power dependence of PL spectra of ZnO nanocrystalline films with size of (a) d = 120 nm, (b) d = 170 nm, and (c) d = 220 nm, taken at T = 15 K. The excitation intensities are shown at the left-hand side of the figures. Solid circles represent the emission peaks of inelastic exciton-exciton scattering.

Fig. 2
Fig. 2

Evolution of IXX (open circles) and IXX/ IDX (dashed lines) of ZnO nanocrystals with size of (a) d = 120 nm, (b) d = 140 nm, and (c) d = 170 nm, as a function of IEXC. The solid lines are the fitting curves of power-law. The dashed lines are just guides for eyes.

Fig. 3
Fig. 3

Evolution of (a) Power coefficient obtained from power-law fitting (open circles), (b) IXX/ IDX at IEXC = 13.5 kW/cm2 (solid squares), (c) Threshold excitation intensity ITH (solid circles), (d) PL intensity ratio ID/ IDX (open squares), deducing from Ref. 18, as a function of crystalline diameter d. The solid lines are just guides for eyes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n EXC = I EXC τ h ν EXC l

Metrics