Abstract

Ca0.20Ba0.80Nb2O6 (CBN-20) crystal has been implanted by 5MeV carbon ions with the fluence of 1 × 1015 ions/cm2. Based on the prism coupling and end face coupling measurements, the light could propagate along with ordinary light direction in the implanted sample which convinced that planar optical waveguide was formed successfully on CBN-20 crystal after C-ion implantation process. The peak position and intensity of Raman spectra have shown obvious changes between the waveguide layer and the substrate, therefore the Raman spectra can be used to visualize the damage or defects produced during the implantation process in the CBN-20 crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of waveguide properties and Raman spectroscopic visualization of C and O ion implantation on LaAlO3 crystals

Mei Qiao, Tie-Jun Wang, Xiao-Fei Yu, Hong-Lian Song, Jing Guan, Peng Liu, Jin-Hua Zhao, and Xue-Lin Wang
Appl. Opt. 53(32) 7619-7623 (2014)

Optical confinement achieved in ZnO crystal by O+ ions implantation: analysis of waveguide formation and properties

Xianbing Ming, Fei Lu, Jiaojian Yin, Ming Chen, Shaomei Zhang, Xiuhong Liu, Zhenhua Qin, and Yujie Ma
Opt. Express 19(8) 7139-7146 (2011)

Optical properties of planar waveguides on ZnWO4 formed by carbon and helium ion implantation and effects of annealing

Jin-Hua Zhao, Tao Liu, Sha-Sha Guo, Jing Guan, and Xue-Lin Wang
Opt. Express 18(18) 18989-18996 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
    [Crossref]
  2. P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
    [Crossref]
  3. C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
    [Crossref]
  4. S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
    [Crossref]
  5. P. F. Ndione, M. Ferrera, D. Duchesne, L. Razzari, M. Gaidi, M. Chaker, and R. Morandotti, “Hybrid integration of Ca 0.28 Ba 0.72 Nb2O6 thin film electro-optic waveguides with silica/silicon substrates,” Opt. Express 17(17), 15128–15133 (2009).
    [Crossref] [PubMed]
  6. Y. Tan, F. Chen, D. Jaque, W.-L. Gao, H.-J. Zhang, J. G. Solé, and H.-J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
    [Crossref] [PubMed]
  7. G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
    [Crossref]
  8. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20(11), 1256–1258 (1995).
    [Crossref] [PubMed]
  9. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  10. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [Crossref]
  11. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
    [Crossref]
  12. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
    [Crossref]
  13. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
    [Crossref]
  14. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
    [Crossref] [PubMed]
  15. J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
    [Crossref]
  16. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [Crossref] [PubMed]
  17. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  18. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [Crossref]
  19. L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
    [Crossref]
  20. Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com .
  21. J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
    [Crossref]
  22. H. C. Huang, J. I. Dadap, I. P. Herman, H. Bakhru, and R. M. Osgood, “Micro-Raman spectroscopic visualization of lattice vibrations and strain in He+- implanted single-crystal LiNbO3,” Opt. Mater. Express 4(2), 338–345 (2014).
    [Crossref]

2014 (1)

2013 (4)

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013).
[Crossref]

2011 (1)

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

2010 (1)

J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

2009 (2)

2008 (2)

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[Crossref] [PubMed]

2007 (2)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

2006 (1)

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

2004 (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

2001 (1)

1996 (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

1995 (1)

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Aulkemeyer, S.

Bakhru, H.

Bakhru, S.

Burianek, M.

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

Chaker, M.

Chan, H. L. W.

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Chen, F.

J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Y. Tan, F. Chen, D. Jaque, W.-L. Gao, H.-J. Zhang, J. G. Solé, and H.-J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
[Crossref] [PubMed]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[Crossref] [PubMed]

Dadap, J. I.

De Wolf, I.

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

Di, J. Q.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Duchesne, D.

Fan, H.

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Ferrera, M.

Fu, G.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

Gaathon, O.

Gaidi, M.

Gao, L.

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Gao, W. L.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Gao, W.-L.

Haro-González, P.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

Herman, I. P.

Herman, P.

Hu, H.

Huang, H.

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Huang, H. C.

Huang, H.-C.

Jaque, D.

Ke, S.

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Kip, D.

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Lavín, V.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

León-Luis, F. S.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

Lu, F.

Ma, H. J.

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Ma, H.-J.

Ma, J.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Martín, I. R.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

Martín, L. L.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

Morandotti, R.

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20(11), 1256–1258 (1995).
[Crossref] [PubMed]

Muhlberg, M.

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

Ndione, P. F.

Nejadmalayeri, A. H.

Nie, R.

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Osgood, R. M.

Pérez-Rodríguez, C.

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

Qian, L. J.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Qin, X. F.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

Razzari, L.

Ródenas, A.

Schreuer, J.

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

Shekhar Pandey, C.

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

Shen, D. Y.

Shi, B. R.

Solé, J. G.

Song, H. L.

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

Swirkowicz, M. A.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Tan, Y.

Wang, F. X.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

Wang, H. L.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

Wang, K. M.

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[Crossref] [PubMed]

Wang, K.-M.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Wang, L.

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Wang, X. L.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

Wang, X.-L.

J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Xie, G. Q.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Xu, J.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Xu, X. D.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Xu, X. G.

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

Yu, S.

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Yuan, P.

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Zhang, H. J.

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

Zhang, H.-J.

Zhao, J. H.

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

Zhao, J.-H.

J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Fu, K. M. Wang, X. L. Wang, H. J. Zhang, X. G. Xu, H. L. Song, and H. J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87(2), 289–292 (2007).
[Crossref]

Appl. Phys. Lett. (1)

C. Shekhar Pandey, J. Schreuer, M. Burianek, and M. Muhlberg, “Relaxor behavior of ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6,” Appl. Phys. Lett. 102(2), 022903 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Ke, H. Fan, H. Huang, H. L. W. Chan, and S. Yu, “Dielectric, ferroelectric properties, and grain growth of CaxBa1-xNb2O6 ceramics with tungsten-bronzes structure,” J. Appl. Phys. 104(2), 024101 (2008).
[Crossref]

Nucl. Instrum. Meth. B (2)

L. Wang, F. Chen, X. L. Wang, L. L. Wang, K. M. Wang, L. Gao, H. J. Ma, and R. Nie, “Si2+ ion implanted into stoichiometric lithium niobate crystals: Waveguide characterization and lattice disorder analysis,” Nucl. Instrum. Meth. B 251(1), 104–108 (2006).
[Crossref]

J. H. Zhao, X. F. Qin, F. X. Wang, G. Fu, H. L. Wang, and X. L. Wang, “Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation,” Nucl. Instrum. Meth. B 307, 452–455 (2013).
[Crossref]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (3)

P. Haro-González, I. R. Martín, L. L. Martín, F. S. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[Crossref]

J.-H. Zhao, X.-L. Wang, and F. Chen, “1/4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation,” Opt. Mater. 32(11), 1441–1445 (2010).
[Crossref]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[Crossref]

Opt. Mater. Express (2)

Photon. Technol. Lett. (1)

W. L. Gao, G. Q. Xie, J. Ma, P. Yuan, L. J. Qian, J. Q. Di, X. D. Xu, J. Xu, and M. A. Swirkowicz, “Self-Frequency Conversion Laser in Nd-Doped Calcium Barium Niobate Ferroelectric Crystal,” Photon. Technol. Lett. 25(15), 1405–1407 (2013).
[Crossref]

Phys. Status Solidi C (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004).
[Crossref]

Semicond. Sci. Technol. (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[Crossref]

Other (3)

J. F. Ziegler, computer code, SRIM, http://www.srim.org .

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The effective refractive index (neff) versus mode number of the CBN-20 planar waveguide for no and ne: (a) at a wavelength of 633 nm, (b) at a wavelength of 1539 nm.
Fig. 2
Fig. 2 Microscope picture of the end face of the CBN-20 after 5 MeV C ions implantation.
Fig. 3
Fig. 3 Electronic (divided by 10) and nuclear energy losses as a function of the penetration depth for 5 MeV C ions implanted into CBN-20 based on the SRIM 2010 simulation.
Fig. 4
Fig. 4 The no (dashed blue line) and ne (solid red line) profile of the C ions implanted planar waveguide with energy of 5 MeV and fluence of 1 × 1015 ions/cm2: (a) at a wavelength of 633 nm; (b) at a wavelength of 1539 nm.
Fig. 5
Fig. 5 The near field light intensity profile of the planar waveguide: (a) TM0 mode captured by a CCD camera correspond to no direction; (b) simulated result of TM0 mode based on no profile; (c) simulated result of TE0 mode based on ne profile.
Fig. 6
Fig. 6 Raman spectra obtained at end face of the sample with different probing locations: waveguide region labeled by solid red line, substrate region labeled by dashed blue line. (b) is normalized Raman spectra by use of (a).

Metrics