Abstract

Theoretical estimates are presented in this paper for the composition-dependent direct bandgap of bulk unstrained CSiGeSn. Interpolation between the corresponding bandgaps of elemental C, Si, Ge and Sn at their Γ, L, Δ, and X conduction band minima showed that each of the binary alloys CSn, SiSn and GeSn had a range of direct-gap compositions. Those ranges were plotted on a quaternary composition chart in order to define the boundaries of CSiGeSn composition space within which the alloy is “truly direct.” With the CSiGeSn cubic lattice parameter in the range of 0.576 nm to 0.649 nm, the predicted direct gaps ranged from 1.50 eV down to −0.41 eV. The boundaries of this space shift towards lower Sn content when bowing of the direct and indirect gaps is taken into account.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Germanium tin: silicon photonics toward the mid-infrared [Invited]

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov
Photon. Res. 1(2) 69-76 (2013)

Single-crystalline Ge1-x-ySixSny alloys on Si (100) grown by magnetron sputtering

Jun Zheng, Suyuan Wang, Tianwei Zhou, Yuhua Zuo, Buwen Cheng, and Qiming Wang
Opt. Mater. Express 5(2) 287-294 (2015)

Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures

Richard Soref, Joshua Hendrickson, and Justin W. Cleary
Opt. Express 20(4) 3814-3824 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539–541 (1991).
    [Crossref]
  2. Ioffe Physico-Technical Institute, Electronic Archive, Physical Properties of Semiconductors, http://www.ioffe.ru/SVA/NSM/Semicond/index.html
  3. M. R. Salehpour and S. Satpathy, “Comparison of electron bands of hexagonal and cubic diamond,” Phys. Rev. B Condens. Matter 41(5), 3048–3052 (1990).
    [Crossref] [PubMed]
  4. O. Madelung, Semiconductors: Data Handbook, 3rd Edition (Springer Verlag, 2004).
  5. P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
    [Crossref]
  6. A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
    [Crossref]
  7. E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium-tin: silicon photonics toward the mid-infrared,” Photon. Res. 1(2), 69–76 (2013).
    [Crossref]
  8. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
    [Crossref]
  9. P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
    [Crossref]

2013 (1)

2012 (1)

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

2010 (1)

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

2007 (1)

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

2006 (1)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

1991 (1)

R. A. Soref and C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539–541 (1991).
[Crossref]

1990 (1)

M. R. Salehpour and S. Satpathy, “Comparison of electron bands of hexagonal and cubic diamond,” Phys. Rev. B Condens. Matter 41(5), 3048–3052 (1990).
[Crossref] [PubMed]

Arguirov, T.

Birdwell, A. G.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Burinprakhon, T.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

Canonico, M.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Cook, C. S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

D’Costa, V. R.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Hao, A.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Harrison, P.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Ikonic, Z.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Kasper, E.

Kittler, M.

Kouvetakis, J.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Littler, C. L.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Liu, R.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Liu, X.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Maensiri, S.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

Menendez, J.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Moontragoon, P.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Oehme, M.

Pengpit, P.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

Perry, C. H.

R. A. Soref and C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539–541 (1991).
[Crossref]

Salehpour, M. R.

M. R. Salehpour and S. Satpathy, “Comparison of electron bands of hexagonal and cubic diamond,” Phys. Rev. B Condens. Matter 41(5), 3048–3052 (1990).
[Crossref] [PubMed]

Satpathy, S.

M. R. Salehpour and S. Satpathy, “Comparison of electron bands of hexagonal and cubic diamond,” Phys. Rev. B Condens. Matter 41(5), 3048–3052 (1990).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref and C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539–541 (1991).
[Crossref]

Vukmirovic, N.

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

Wang, X.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Yang, X.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Zhu, Y.

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

Zollner, S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

J. Appl. Phys. (2)

R. A. Soref and C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539–541 (1991).
[Crossref]

A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, and R. Liu, “First-principles investigations on electronic, elastic and optical properties of XC (X=Si, Ge, and Sn) under pressure,” J. Appl. Phys. 108(6), 063531 (2010).
[Crossref]

J. Non-Cryst. Solids (1)

P. Moontragoon, P. Pengpit, T. Burinprakhon, S. Maensiri, N. Vukmirovic, Z. Ikonic, and P. Harrison, “Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure,” J. Non-Cryst. Solids 358(17), 2096–2098 (2012).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. R. Salehpour and S. Satpathy, “Comparison of electron bands of hexagonal and cubic diamond,” Phys. Rev. B Condens. Matter 41(5), 3048–3052 (1990).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

P. Moontragoon, Z. Ikonic, and P. Harrison, “Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22(7), 742–748 (2007).
[Crossref]

Other (2)

O. Madelung, Semiconductors: Data Handbook, 3rd Edition (Springer Verlag, 2004).

Ioffe Physico-Technical Institute, Electronic Archive, Physical Properties of Semiconductors, http://www.ioffe.ru/SVA/NSM/Semicond/index.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fundamental bandgaps of group IV elements as a function of lattice size for unstrained, bulk crystal.

Fig. 2
Fig. 2

Fundamental Eg-versus-a for C1-xSnx using the linear-theory method. Dashed line shows bowing at Γ.

Fig. 3
Fig. 3

Fundamental Eg-versus-a for Si1-ySny using the linear-theory method. Dashed line shows bowing at Γ.

Fig. 4
Fig. 4

Fundamental Eg-versus-a for Ge1-zSnz using the linear-theory method. Dashed line shows bowing at Γ.

Fig. 5
Fig. 5

“Truly direct” bandgap regimes of three binary group-IV alloys as a function of lattice size. The four-sided region defined by the outer boundaries determines the fundamentally direct region of CSiGeSn.

Metrics