Abstract

The dynamics of exciton transport, energy relaxation, and localization in disordered Tris(8-quinolinolato)-aluminum (Alq3) organic semiconductors with different 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-lH, 5H, 11H-benzo[l] pyrano[6, 7, 8-і ј] quinolizin-11-one (C545T) dopant concentrations were reported. The increasing trend of the Stokes Shift (737~764 meV) with increasing dopant concentrations is consistent with the degree of disorder and a more effective Förster energy transfer from Alq3 to C545T. In addition, a dynamic scenario representing possible paths of the exciton transport (hopping) among host molecules and the competition of the exciton transport from host molecules into the deep site traps (localized states) and aggregations was proposed to elucidate the recombination dynamics in disordered C545T-doped Alq3 organic semiconductors. The early-stage decay times, decreasing with increasing emission photon energy, show the characteristic of the exciton hopping and energy relaxation processes within the inhomogeneously broadened density-of-states in organic semiconductors. Because the current-voltage (J-V) characteristics of the C545T-doped organic light emitting diode (OLED) fitted well with the power law J~Vm (m>2), the carrier transport behaviours can be described by the trapped-control mode and the tail state distribution can be approximated by the exponential trap distribution. With the approximation of an exponential distribution for the tail states, the characteristic energy (Em), radiative recombination lifetime (τrad), and localization depth (E0) associated with the dynamics of exciton energy relaxation and localization can be quantitatively determined. The much larger E0 (40~120 meV), increasing with the dopant concentration, than other disordered semiconductors (2~34 meV) indicates a strong localization effect in such doped organic semiconductors. Also, the strong dependence of Em on the dopant concentration shows that a relatively small dopant concentration can enhance the degree of disorder and greatly affect the recombination dynamics. Furthermore, the observed optical properties and dynamic scenario of C545T-doped Alq3 films are found to be consistent with the carrier transport and recombination dynamics of C545T-doped Alq3 OLEDs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
    [CrossRef]
  2. G. P. Crawford, Flexible Flat Panel Display (John Wiley & Sons, Chichester, UK, 2005).
  3. M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells (Wiley-VCH, Weinheim, 2008).
  4. V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
    [CrossRef]
  5. V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
    [CrossRef]
  6. V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
    [CrossRef]
  7. V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
    [CrossRef]
  8. V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
    [CrossRef]
  9. H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi175(1), 15–56 (1993).
    [CrossRef]
  10. E. V. Emelianova and G. J. Adriaenssens, “Stochastic approach to hopping transport in disordered organic materials,” J. Optoelectron. Adv. Mater.6(4), 1105–1131 (2004).
  11. A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
    [CrossRef]
  12. S. V. Novikov and A. V. Vannikov, “Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles,” J. Phys. Chem.99(40), 14573–14576 (1995).
    [CrossRef]
  13. N. S. Sariciftci, Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model (World Scientific, 1998).
  14. A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
    [CrossRef]
  15. H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
    [CrossRef]
  16. P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J. Appl. Phys.33(1), 205–215 (1962).
    [CrossRef]
  17. V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
    [CrossRef]
  18. V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
    [CrossRef]
  19. Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B70(23), 235207 (2004).
    [CrossRef]
  20. N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
    [CrossRef]
  21. G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
    [CrossRef]
  22. H. Bässler and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res.32(2), 173–182 (1999).
    [CrossRef]
  23. R. Richert and A. Blumen, Disordered Effect on Relaxational Processes (Springer-Verlag, Berlin, 1994).
  24. W. Brutting, Chapter 7 of Physics of Organic Semiconductors (Wiley-VCH, Weinheim, 2006).
  25. M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
    [CrossRef] [PubMed]
  26. R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
    [CrossRef] [PubMed]
  27. S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
    [CrossRef]
  28. A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
    [CrossRef]
  29. C. Gourdon and P. Lavallard, “Exciton transfer between localized states in CdS1–xSex alloys,” Phys. Status Solidi153(2), 641–652 (1989).
    [CrossRef]
  30. Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
    [CrossRef]
  31. H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
    [CrossRef]

2009 (1)

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

2008 (1)

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

2006 (1)

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

2005 (2)

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

2004 (3)

E. V. Emelianova and G. J. Adriaenssens, “Stochastic approach to hopping transport in disordered organic materials,” J. Optoelectron. Adv. Mater.6(4), 1105–1131 (2004).

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B70(23), 235207 (2004).
[CrossRef]

2003 (2)

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

2002 (4)

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
[CrossRef]

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

2000 (1)

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

1999 (2)

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

H. Bässler and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res.32(2), 173–182 (1999).
[CrossRef]

1997 (1)

A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
[CrossRef]

1996 (1)

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

1995 (1)

S. V. Novikov and A. V. Vannikov, “Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles,” J. Phys. Chem.99(40), 14573–14576 (1995).
[CrossRef]

1994 (1)

H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
[CrossRef]

1993 (3)

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi175(1), 15–56 (1993).
[CrossRef]

A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
[CrossRef]

1989 (1)

C. Gourdon and P. Lavallard, “Exciton transfer between localized states in CdS1–xSex alloys,” Phys. Status Solidi153(2), 641–652 (1989).
[CrossRef]

1962 (1)

P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J. Appl. Phys.33(1), 205–215 (1962).
[CrossRef]

Adriaenssens, G. J.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

E. V. Emelianova and G. J. Adriaenssens, “Stochastic approach to hopping transport in disordered organic materials,” J. Optoelectron. Adv. Mater.6(4), 1105–1131 (2004).

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

Aernauts, T.

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Arkhipov, V. I.

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

Aubouy, L.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Barrière, A. S.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Bässler, H.

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

H. Bässler and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res.32(2), 173–182 (1999).
[CrossRef]

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
[CrossRef]

A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
[CrossRef]

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi175(1), 15–56 (1993).
[CrossRef]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Borsenberger, P. M.

H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
[CrossRef]

A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
[CrossRef]

Bradley, D. D. C.

A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
[CrossRef]

Campbell, A. J.

A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
[CrossRef]

Casu, M. B.

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

Chiguvare, Z.

Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B70(23), 235207 (2004).
[CrossRef]

Chung, C. T.

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

Cleve, B.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Dieckmann, A.

A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
[CrossRef]

Ding, X. M.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Dyakonov, V.

Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B70(23), 235207 (2004).
[CrossRef]

Emelianova, E. V.

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

E. V. Emelianova and G. J. Adriaenssens, “Stochastic approach to hopping transport in disordered organic materials,” J. Optoelectron. Adv. Mater.6(4), 1105–1131 (2004).

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

Feng, S. W.

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

Fujita, S.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Geens, W.

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Gerbier, P.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Göbel, E. O.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Gourdon, C.

C. Gourdon and P. Lavallard, “Exciton transfer between localized states in CdS1–xSex alloys,” Phys. Status Solidi153(2), 641–652 (1989).
[CrossRef]

He, J.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Helfrich, W.

P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J. Appl. Phys.33(1), 205–215 (1962).
[CrossRef]

Heremans, P.

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

Hirsch, L.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Hou, X. Y.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Huang, C. J.

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

Huang, W.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Huby, N.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Jain, S. C.

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Jiang, H. X.

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

Kambili, A.

A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
[CrossRef]

Kapoor, A. K.

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Karg, S.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Kawakami, Y.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Kersting, R.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Kim, H. S.

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

Krause, S.

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

Kumar, V.

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Kurz, H.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Lavallard, P.

C. Gourdon and P. Lavallard, “Exciton transfer between localized states in CdS1–xSex alloys,” Phys. Status Solidi153(2), 641–652 (1989).
[CrossRef]

Lemmer, U.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Leo, K.

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Li, J.

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

Lidzey, D. G.

A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
[CrossRef]

Lin, J. Y.

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

Mahrt, R. F.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Mair, R. A.

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

Mark, P.

P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J. Appl. Phys.33(1), 205–215 (1962).
[CrossRef]

Martin, S. J.

A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
[CrossRef]

Mertens, R.

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Mukai, T.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Nakamura, S.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Narukawa, Y.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Novikov, S. V.

S. V. Novikov and A. V. Vannikov, “Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles,” J. Phys. Chem.99(40), 14573–14576 (1995).
[CrossRef]

Parneix, J. P.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Perry, R. J.

H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
[CrossRef]

Poortmans, J.

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

Riess, W.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Saijou, S.

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

Scheidler, M.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Schöll, A.

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

Schweitzer, B.

H. Bässler and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res.32(2), 173–182 (1999).
[CrossRef]

Shi, H. Z.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Shih, M. C.

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

Thomas, P.

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Umbach, E.

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

Vannikov, A. V.

S. V. Novikov and A. V. Vannikov, “Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles,” J. Phys. Chem.99(40), 14573–14576 (1995).
[CrossRef]

Vignau, L.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Walker, A. B.

A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
[CrossRef]

Wang, X. J.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Wantz, G.

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

Xiong, Z. H.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Xu, Z.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Zhan, Y. Q.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Zhang, S. T.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Zhong, G. Y.

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Acc. Chem. Res. (1)

H. Bässler and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res.32(2), 173–182 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

G. Y. Zhong, Z. Xu, J. He, S. T. Zhang, Y. Q. Zhan, X. J. Wang, Z. H. Xiong, H. Z. Shi, X. M. Ding, W. Huang, and X. Y. Hou, “Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq,” Appl. Phys. Lett.81(6), 1122–1124 (2002).
[CrossRef]

Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999).
[CrossRef]

H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, “Time-resolved photoluminescence studies of AlxGa1-xN alloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped semiconducting polymers,” Appl. Phys. Lett.82(19), 3245–3247 (2003).
[CrossRef]

J. Appl. Phys. (5)

P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J. Appl. Phys.33(1), 205–215 (1962).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, “Carrier transport in conducting polymers with field dependent trap occupancy,” J. Appl. Phys.92(12), 7325–7329 (2002).
[CrossRef]

V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys.94(2), 1283–1285 (2003).
[CrossRef]

A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys.82(12), 6326–6342 (1997).
[CrossRef]

N. Huby, L. Hirsch, G. Wantz, L. Vignau, A. S. Barrière, J. P. Parneix, L. Aubouy, and P. Gerbier, “Injection and transport processes in organic light emitting diodes based on a silole derivative,” J. Appl. Phys.99(8), 084907 (2006).
[CrossRef]

J. Chem. Phys. (1)

A. Dieckmann, H. Bässler, and P. M. Borsenberger, “An assessment of the role of dipoles on the density-of-states function of disordered molecular solids,” J. Chem. Phys.99(10), 8136–8141 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non-Cryst. Solids338–340, 603–606 (2004).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

E. V. Emelianova and G. J. Adriaenssens, “Stochastic approach to hopping transport in disordered organic materials,” J. Optoelectron. Adv. Mater.6(4), 1105–1131 (2004).

J. Phys. Chem. (1)

S. V. Novikov and A. V. Vannikov, “Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles,” J. Phys. Chem.99(40), 14573–14576 (1995).
[CrossRef]

J. Phys. Condens. Matter (2)

A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys. Condens. Matter14(42), 9825–9876 (2002).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Weak-field carrier hopping in disordered organic semiconductors: the effects of deep traps and partly filled density-of-states distribution,” J. Phys. Condens. Matter14(42), 9899–9911 (2002).
[CrossRef]

J. Polym. Sci. B (1)

H. Bässler, P. M. Borsenberger, and R. J. Perry, “Charge transport in poly(methylphenylsilane):The case for superimposed disorder and polaron effects,” J. Polym. Sci. B32(9), 1677–1685 (1994).
[CrossRef]

New J. Phys. (1)

S. Krause, M. B. Casu, A. Schöll, and E. Umbach, “Determination of transport levels of organic semiconductors by UPS and IPS,” New J. Phys.10(8), 085001 (2008).
[CrossRef]

Phys. Rev. B (3)

Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B70(23), 235207 (2004).
[CrossRef]

V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors,” Phys. Rev. B71(4), 045214 (2005).
[CrossRef]

V. I. Arkhipov, E. V. Emelianova, P. Heremans, and H. Bässler, “Analytic model of carrier mobility in doped disordered organic semiconductors,” Phys. Rev. B72(23), 235202 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R. F. Mahrt, H. Kurz, H. Bässler, E. O. Göbel, and P. Thomas, “Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene),” Phys. Rev. B Condens. Matter54(8), 5536–5544 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Kersting, U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel, “Femtosecond energy relaxation in π -conjugated polymers,” Phys. Rev. Lett.70(24), 3820–3823 (1993).
[CrossRef] [PubMed]

Phys. Status Solidi (2)

C. Gourdon and P. Lavallard, “Exciton transfer between localized states in CdS1–xSex alloys,” Phys. Status Solidi153(2), 641–652 (1989).
[CrossRef]

H. Bässler, “Charge transport in disordered organic photoconductors a Monte Carlo simulation study,” Phys. Status Solidi175(1), 15–56 (1993).
[CrossRef]

Thin Solid Films (1)

S. W. Feng, M. C. Shih, C. J. Huang, and C. T. Chung, “Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes,” Thin Solid Films517(8), 2719–2723 (2009).
[CrossRef]

Other (5)

G. P. Crawford, Flexible Flat Panel Display (John Wiley & Sons, Chichester, UK, 2005).

M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells (Wiley-VCH, Weinheim, 2008).

N. S. Sariciftci, Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model (World Scientific, 1998).

R. Richert and A. Blumen, Disordered Effect on Relaxational Processes (Springer-Verlag, Berlin, 1994).

W. Brutting, Chapter 7 of Physics of Organic Semiconductors (Wiley-VCH, Weinheim, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Sample structures of C545T-doped Alq3 organic semiconductors. The molecular structures of (b) Alq3 and (c) C545T.

Fig. 2
Fig. 2

Normalized PL (the solid lines, left ordinate) and PLE (the dash lines, right ordinate) spectra of 1%, 3%, 5%, and 7% C545T-doped Alq3 samples. The dotted line shows the PL spectrum of Alq3 as a reference. The inset in (a) shows an energy level diagram of the Alq3:C545T system with the Förster energy transfer process. SS is the Stokes Shift.

Fig. 3
Fig. 3

Low-temperature (10K) transient luminescence intensities at several photon energies of the (a) 1% and (b) 7% C545T-doped Alq3 samples.

Fig. 4
Fig. 4

(a) A dynamic scenario representing possible paths of the exciton transport into the lower-energy localized states and aggregations. In the disordered C545T-doped Alq3 system, due to inhomogeneities of the local molecular environment and relative molecular orientation, the exciton energy level varied spatially. Excitons can transport or hop among different energy levels. (b) Corresponding diagram of the energy relaxation in the inhomogeneously broadened Gaussian DOS, P(E), with an exponential distribution for the tail states. Characteristic energy (Em), PL peak energy (EPL), and localization depth (E0) are indicated.

Fig. 5
Fig. 5

Calibrated early-stage decay times as functions of photon energy of the four samples. The dotted curves represent the fitted results from using Eq. (3).

Fig. 6
Fig. 6

Fitted results for the following parameters: (a) Em (the characteristic energy at which the recombination rate equals the transfer rate) and EPL (PL peak energy); (b) E0 (localization depth in the tail states) and ΔE ( = Em - EPL); (c) τRad (radiative recombination lifetime).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = A 1 exp ( t / τ 1 ) + A 2 ( t / τ 2 ) + I 0
h(E)= H t E t exp( E E t )
τ(E)= τ Rad 1+exp[(E E m )/ E 0 ]

Metrics