Abstract

Circular cladding waveguides were realized in a 5.0-mm long, 1.1-at.% Nd:YAG ceramic by direct femtosecond-laser writing using a scheme in which the laser medium is moved on a helical trajectory along its axis and parallel to the writing direction. Laser emission was obtained under the pump with a fiber-coupled diode laser. A 100-μm diameter waveguide delivered laser pulses at 1.06 μm with 3.4-mJ energy for the pump with pulses of 13.1-mJ energy, at 0.30 slope efficiency; laser pulses at 1.3 μm with 1.2-mJ energy were obtained from the same device. Comparison with a waveguide of the same dimension that was inscribed by the classical translation method of the laser medium is made. Efficient integrated lasers based on cladding waveguides that are pumped by fiber-coupled diode lasers could be realized by this writing method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  3. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  4. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
    [CrossRef]
  5. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  6. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
    [CrossRef]
  7. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009).
    [CrossRef] [PubMed]
  8. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  9. T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, and G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser,” Opt. Mater. Express1(3), 428–433 (2011).
    [CrossRef]
  10. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express21(21), 25501–25508 (2013).
    [CrossRef] [PubMed]
  11. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
    [CrossRef]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  13. T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A.-G. Paschke, N.-O. Hansen, K. Petermann, and G. Huber, “Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region,” Opt. Lett.36(23), 4620–4622 (2011).
    [CrossRef] [PubMed]
  14. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30(17), 2248–2250 (2005).
    [CrossRef] [PubMed]
  15. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  16. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
    [CrossRef] [PubMed]
  17. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
    [CrossRef] [PubMed]
  18. Q. An, Y. Ren, Y. Jia, J. R. V. de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express3(4), 466–471 (2013).
    [CrossRef]
  19. S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett.37(24), 5223–5225 (2012).
    [CrossRef] [PubMed]
  20. H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett.38(17), 3294–3297 (2013).
    [CrossRef] [PubMed]
  21. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
    [CrossRef]
  22. G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).
  23. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
    [CrossRef]
  24. O. Caulier, D. Le Coq, E. Bychkov, and P. Masselin, “Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation,” Opt. Lett.38(20), 4212–4215 (2013).
    [CrossRef] [PubMed]
  25. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
    [CrossRef]

2014 (1)

2013 (6)

2012 (4)

2011 (3)

2010 (4)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009).
[CrossRef] [PubMed]

2008 (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

2006 (1)

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

2005 (1)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

1996 (1)

An, Q.

Bain, F. M.

Beecher, S.

Benayas, A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Bennion, I.

Brown, C. T. A.

Brown, G.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Bychkov, E.

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Caulier, O.

Chen, F.

Dascalu, T.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

Davis, K. M.

de Aldana, J. R. V.

Erbert, G.

Fechner, M.

Fiebig, C.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Hansen, N.-O.

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

Hirao, K.

Huber, G.

Jaque, D.

H. Liu, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett.38(17), 3294–3297 (2013).
[CrossRef] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Jia, Y.

Jipa, F.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
[CrossRef]

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Kar, A. K.

Khrushchev, I.

Kränkel, C.

Kuleshov, N. V.

Lagatsky, A. A.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Le Coq, D.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Liu, H.

Lu, Q. M.

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Masselin, P.

Metz, P.

Mezentsev, V.

Mitchell, J.

Miura, K.

Müller, S.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Okhrimchuk, A.

Okhrimchuk, A. G.

Paschke, A.-G.

Paschke, K.

Pavel, N.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Petermann, K.

Psaila, N. D.

Reichert, F.

Ren, Y.

Rodenas, A.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Ródenas, A.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Salamu, G.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

Shestakov, A.

Shestakov, A. V.

Sibbett, W.

Siebenmorgen, J.

Sugimoto, N.

Taira, T.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Tan, Y.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

Thomson, R. R.

Torchia, G. A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Vázquez de Aldana, J. R.

Voicu, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Zamfirescu, M.

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
[CrossRef]

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

Appl. Phys A, Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys A, Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Appl. Phys. B (3)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94, 1.06 and 1.34 μm laser emission and of heating effects under 809 and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B82(4), 599–605 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Laser Phys. Lett. (1)

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett.10(9), 095802 (2013).
[CrossRef]

Opt. Express (7)

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
[CrossRef] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express21(21), 25501–25508 (2013).
[CrossRef] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express22(5), 5177–5182 (2014).
[CrossRef]

Opt. Lett. (7)

Opt. Mater. Express (2)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Rom. Reports in Physics (1)

G. Salamu, F. Voicu, N. Pavel, T. Dascalu, F. Jipa, and M. Zamfirescu, “Laser emission in diode-pumped Nd:YAG single-crystal waveguides realized by direct femtosecond-laser writing technique,” Rom. Reports in Physics65(3), 943–953 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Techniques for direct fs-laser writing are shown: (a) linear translation, transverse to the laser medium, step-by-step along a defined shape; (b) helical movement, transverse to the laser medium; (c) helical movement, parallel to the laser medium.

Fig. 2
Fig. 2

Microscope images (in reflection mode) of the circular waveguides inscribed in the Nd:YAG ceramic by helical moving: (a) DWG-1, ϕ = 100 μm; (b) DWG-3, ϕ = 50 μm; the (c) DWG-4, ϕ = 100 μm was obtained by the step-by-step translation technique. Top views of the walls along the translation direction for the (d) DWG-1 and (e) DWG-4 waveguides are shown.

Fig. 3
Fig. 3

Views of the Nd:YAG exit surface S2 under fiber-coupled diode pumping in: (a) bulk, and in the waveguides (b) DWG-1 (ϕ = 100 μm), (c) DWG-3 (ϕ = 50 μm) and (d) DWG-4 (ϕ = 100 μm). Insets are photos of the waveguides, without the pump.

Fig. 4
Fig. 4

(a) Laser pulse energy at 1.06 μm versus energy of the pump pulse incident on the DWG-1 waveguide. The near-field distributions are shown at the maximum laser pulse energy (OCM with T = 0.10) for emission in (b) DWG-1 (Ep = 3.4 mJ) and (c) bulk Nd:YAG (Ep = 5.5 mJ).

Fig. 5
Fig. 5

The best performances obtained from the waveguides in quasi-cw operation for emission at: (a) λem = 1.06 μm, OCM with T = 0.10; (b) λem = 1.3 μm, OCM with T = 0.03.

Fig. 6
Fig. 6

Cw output power at 1.06 μm yielded by the waveguides used in the experiments, OCM with T = 0.05 at λem. Insets are the beams’ near-field distributions at the indicated points.

Metrics