Abstract

We report a low-threshold and efficient Alexandrite laser that is pumped by only one state-of-the-art single-spatial-mode diode. The pump diode provided 170 mW of output power at 635 nm. In continuous wave (cw) laser experiments, we demonstrated lasing thresholds as low as 13 mW, slope efficiencies as high as 36%, output powers up to 48 mW, and a tuning range extending from 736 nm to 823 nm. Laser slope efficiency, laser output power, fluorescence lifetime, and emission intensity were further shown to decrease monotonically with increasing temperature. Pure cw operation could be obtained under most circumstances. However, self-Q-switching (SQS) was also observed in slightly misaligned laser cavities. During SQS, stable pulses with pulsewidths in the 5-15 μs range and pulse repetition rates in the 10-35 kHz range have been obtained. We believe that this compact and efficient Alexandrite laser system may be an attractive source for several applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
    [CrossRef]
  2. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B29(8), 1894–1903 (2012).
    [CrossRef]
  3. B. K. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett.10(2), 62–64 (1985).
    [CrossRef] [PubMed]
  4. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
    [CrossRef]
  5. R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser-diodes,” IEEE J. Quantum Electron.27(8), 1968–1970 (1991).
    [CrossRef]
  6. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991).
    [CrossRef] [PubMed]
  7. A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
    [CrossRef]
  8. E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012).
    [CrossRef]
  9. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979).
    [CrossRef] [PubMed]
  10. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
    [CrossRef]
  11. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).
  12. R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
    [CrossRef]
  13. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
    [CrossRef]
  14. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
    [CrossRef]
  15. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.
  16. J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. W. Piston, K. Joos, and M. S. Hutson, “Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range,” Biomed. Opt. Express2(5), 1275–1281 (2011).
    [CrossRef] [PubMed]
  17. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-Pulse Dual-Wavelength Alexandrite Laser for Atmospheric Water Vapor Measurement,” Appl. Opt.30(27), 3930–3937 (1991).
    [CrossRef] [PubMed]
  18. D. Bruneau, T. A. des Lions, P. Quaglia, and J. Pelon, “Injection-Seeded Pulsed Alexandrite Laser for Differential Absorption Lidar Application,” Appl. Opt.33(18), 3941–3950 (1994).
    [CrossRef] [PubMed]
  19. P. Ponsardin, N. S. Higdon, B. E. Grossmann, and E. V. Browell, “Spectral Control of an Alexandrite Laser for an Airborne Water-Vapor Differential Absorption Lidar System,” Appl. Opt.33(27), 6439–6450 (1994).
    [CrossRef] [PubMed]
  20. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV outputfrom a CW diode array-pumped tunable alexandrite laser,” in Lasers and Electro-Optics (OSA/CLEO, 2005).
  21. M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe (Optical Society of America, Munich, 2013).
  22. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B30(12), 3184–3192 (2013).
    [CrossRef]
  23. W. Koechner, Solid-State Laser Engineering, 4 ed., Springer Series in Optical Sciences (Springer, 1996), Vol. 1.
  24. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
    [CrossRef]
  25. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quencing of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B9(12), 2271–2273 (1992).
    [CrossRef]
  26. M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983).
    [CrossRef]
  27. R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
    [CrossRef] [PubMed]
  28. A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
    [CrossRef]
  29. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
    [CrossRef]
  30. V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
    [CrossRef]
  31. I. Freund, “SELF-Q-SWITCHING IN RUBY LASERS,” Appl. Phys. Lett.12(11), 388 (1968).
    [CrossRef]
  32. E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-Switched Cr:LiCAF Laser,” J. Opt. Soc. Am. B30(4), 914–921 (2013).
    [CrossRef]
  33. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968).
    [CrossRef]
  34. M. Birnbaum and C. L. Fincher, “Self-Q-switched Nd+3:YAG and ruby lasers,” Proceedings of the IEEE57, 804-& (1969).
    [CrossRef]
  35. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun.149(4-6), 301–306 (1998).
    [CrossRef]
  36. J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
    [CrossRef]
  37. W. Gadomski and B. Ratajska-Gadomska, “Self-pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B15(11), 2681–2688 (1998).
    [CrossRef]
  38. S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983).
    [CrossRef]
  39. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun.191(3-6), 305–314 (2001).
    [CrossRef]
  40. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+: LiSAF laser,” J. Opt. Soc. Am. B21, 531–538 (2004).
    [CrossRef]
  41. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
    [CrossRef]
  42. H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
    [CrossRef]
  43. W. Gadomski and B. Ratajska-Gadomska, “Homoclinic orbits and chaos in the vibronic short-cavity standing-wave alexandrite laser,” J. Opt. Soc. Am. B17(2), 188–197 (2000).
    [CrossRef]
  44. W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics of the vibronic laser,” Chaos Solitons Fractals17(2-3), 387–396 (2003).
    [CrossRef]
  45. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
    [CrossRef]
  46. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
    [CrossRef]
  47. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
    [CrossRef]
  48. M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982).
    [CrossRef]

2013 (2)

2012 (3)

U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B29(8), 1894–1903 (2012).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012).
[CrossRef]

2011 (2)

2007 (1)

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

2006 (2)

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

2005 (1)

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics of the vibronic laser,” Chaos Solitons Fractals17(2-3), 387–396 (2003).
[CrossRef]

2001 (1)

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun.191(3-6), 305–314 (2001).
[CrossRef]

2000 (1)

1998 (2)

W. Gadomski and B. Ratajska-Gadomska, “Self-pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B15(11), 2681–2688 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun.149(4-6), 301–306 (1998).
[CrossRef]

1994 (3)

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

1992 (1)

1991 (3)

1990 (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

1989 (1)

R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

1987 (1)

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

1985 (3)

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

B. K. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett.10(2), 62–64 (1985).
[CrossRef] [PubMed]

1983 (2)

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983).
[CrossRef]

S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983).
[CrossRef]

1982 (1)

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982).
[CrossRef]

1980 (2)

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

1979 (1)

1975 (1)

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
[CrossRef]

1968 (2)

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968).
[CrossRef]

I. Freund, “SELF-Q-SWITCHING IN RUBY LASERS,” Appl. Phys. Lett.12(11), 388 (1968).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Agnesi, A.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
[CrossRef]

Ait-Ameur, K.

Akimov, V. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Ameur, K. A.

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun.191(3-6), 305–314 (2001).
[CrossRef]

At-Ameur, K.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

Baali, I.

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Bass, M.

Beaud, P.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
[CrossRef]

Beyatli, E.

Birnbaum, M.

M. Birnbaum and C. L. Fincher, “Self-Q-switched Nd+3:YAG and ruby lasers,” Proceedings of the IEEE57, 804-& (1969).
[CrossRef]

Bowen, J. M.

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

Browell, E. V.

Bruneau, D.

Byer, R. L.

Caird, J. A.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
[CrossRef]

Cassanho, A.

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

Catunda, T.

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

Cazeneuve, H.

Chai, B. H. T.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
[CrossRef]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quencing of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B9(12), 2271–2273 (1992).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Chen, Y. F.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
[CrossRef]

Choi, S. Y.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Demirbas, U.

Derougemont, F.

R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
[CrossRef]

des Lions, T. A.

DeShazer, L. G.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
[CrossRef]

Dixon, G. J.

Doualan, J. L.

Eggert, S.

Erbert, G.

Erickson, L. E.

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968).
[CrossRef]

Fedorov, V. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Fincher, C. L.

M. Birnbaum and C. L. Fincher, “Self-Q-switched Nd+3:YAG and ruby lasers,” Proceedings of the IEEE57, 804-& (1969).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Freund, I.

I. Freund, “SELF-Q-SWITCHING IN RUBY LASERS,” Appl. Phys. Lett.12(11), 388 (1968).
[CrossRef]

Frey, R.

R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
[CrossRef]

Frolov, M. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Fromager, M.

Gadomski, W.

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Gang, X.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

Gilliland, G. D.

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

Greborio, A.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
[CrossRef]

Griebner, U.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

Grossmann, B. E.

Haouas, E.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

Harter, D. J.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

Heller, D.

Heller, D. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

Higdon, N. S.

Hirth, A.

Hutson, M. S.

Ivanov, B.

Jayasinghe, A.

Jenssen, H. P.

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979).
[CrossRef] [PubMed]

Joos, K.

Kane, T. J.

Klosner, M.

Korostelin, Y. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Kozlovsky, V. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Kozub, J.

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Kurt, A.

E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012).
[CrossRef]

Lai, S. T.

S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983).
[CrossRef]

Landman, A. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Lee, C. H.

R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
[CrossRef]

Leitenstorfer, A.

Long, M.

Loth, C.

Ménard, V.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

Mendenhall, M.

Meucci, R.

W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics of the vibronic laser,” Chaos Solitons Fractals17(2-3), 387–396 (2003).
[CrossRef]

Mildren, R. P.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

Mirov, S. B.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Moncorge, R.

Moncorgé, R.

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

Morris, R. C.

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991).
[CrossRef] [PubMed]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979).
[CrossRef] [PubMed]

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991).
[CrossRef] [PubMed]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

Naghizadeh, S.

E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012).
[CrossRef]

Nella, J.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
[CrossRef]

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

O’Dell, E. W.

Odell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

Ogilvy, H.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

Passilly, N.

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Pelon, J.

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979).
[CrossRef] [PubMed]

Petrov, V.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

Pilla, V.

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

Piper, J. A.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

Pirzio, F.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
[CrossRef]

Piston, D. W.

Podmarkov, Y. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Ponsardin, P.

Powell, R. C.

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

Prasad, R.

Quaglia, P.

Quarles, G.

Quarles, G. J.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

Ratajska-Gadomska, B.

Reali, G.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
[CrossRef]

Richardson, M. C.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
[CrossRef]

Rosenberg, A.

Rotermund, F.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser-diodes,” IEEE J. Quantum Electron.27(8), 1968–1970 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991).
[CrossRef] [PubMed]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett.16(11), 820–822 (1991).
[CrossRef] [PubMed]

Shand, M. L.

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983).
[CrossRef]

S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983).
[CrossRef]

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982).
[CrossRef]

Shen, J.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Stalder, M.

Suchocki, A. B.

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

Sumpf, B.

Szabo, A.

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968).
[CrossRef]

Ugolotti, E.

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

Voronov, A. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

Walling, J. C.

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
[CrossRef]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett.4(6), 182–183 (1979).
[CrossRef] [PubMed]

Weber, B. C.

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun.149(4-6), 301–306 (1998).
[CrossRef]

Withford, M. J.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

Xi, L.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

Zhou, B. K.

Appl. Opt. (3)

Appl. Phys. B (2)

E. Beyatli, S. Naghizadeh, A. Kurt, and A. Sennaroglu, “Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 mu m,” Appl. Phys. B109(2), 221–225 (2012).
[CrossRef]

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B81(5), 637–644 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

I. Freund, “SELF-Q-SWITCHING IN RUBY LASERS,” Appl. Phys. Lett.12(11), 388 (1968).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett.56(23), 2288–2290 (1990).
[CrossRef]

Biomed. Opt. Express (1)

Chaos Solitons Fractals (1)

W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics of the vibronic laser,” Chaos Solitons Fractals17(2-3), 387–396 (2003).
[CrossRef]

IEEE J. Quantum Electron. (10)

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11(11), 874–881 (1975).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron.18(7), 1152–1155 (1982).
[CrossRef]

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical Amplification Characteristics of Cr-Lisaf and Cr-Licaf under Flashlamp-Pumping,” IEEE J. Quantum Electron.30(5), 1259–1266 (1994).
[CrossRef]

J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable Cw Alexandrite Laser,” IEEE J. Quantum Electron.16(2), 120–121 (1980).
[CrossRef]

R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser-diodes,” IEEE J. Quantum Electron.27(8), 1968–1970 (1991).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron.16(12), 1302–1315 (1980).
[CrossRef]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite lasers - Development and performance,” IEEE J. Quantum Electron.21(10), 1568–1581 (1985).
[CrossRef]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. A. Akimov, and A. A. Voronov, “3-77-5.05-μm tunable solid-state lasers based on Fe2+-doped znse crystals operating at low and room temperatures,” IEEE J. Quantum Electron.42(9), 907–917 (2006).
[CrossRef]

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron.19(3), 480–484 (1983).
[CrossRef]

IEEE J. Quantum Electron. QE (1)

A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE4(10), 692–698 (1968).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Femtosecond Nd:Glass Lasers Pumped by Single-Mode Laser Diodes and Mode Locked With Carbon Nanotube or Semiconductor Saturable Absorber Mirrors,” IEEE J. Sel. Top. Quantum Electron.18(1), 74–80 (2012).
[CrossRef]

J. Appl. Phys. (1)

S. T. Lai and M. L. Shand, “High-Efficiency Cw Laser-Pumped Tunable Alexandrite Laser,” J. Appl. Phys.54(10), 5642–5644 (1983).
[CrossRef]

J. Lumin. (1)

A. B. Suchocki, G. D. Gilliland, R. C. Powell, J. M. Bowen, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” J. Lumin.37(1), 29–37 (1987).
[CrossRef]

J. Opt. Soc. Am. B (7)

Opt. Commun. (7)

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun.149(4-6), 301–306 (1998).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium doped active material,” Opt. Commun.191(3-6), 305–314 (2001).
[CrossRef]

N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. At-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun.260(2), 703–707 (2006).
[CrossRef]

V. Pilla, H. P. Jenssen, A. Cassanho, and T. Catunda, “Discrimination between thermal quenching of the fluorescence and Auger upconversion processes using thermal lens technique,” Opt. Commun.271(1), 184–189 (2007).
[CrossRef]

A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode,” Opt. Commun.284(16-17), 4049–4051 (2011).
[CrossRef]

R. Frey, F. Derougemont, and C. H. Lee, “An Actively Mode-Locked Continuous Wave Alexandrite Laser,” Opt. Commun.73(3), 232–234 (1989).
[CrossRef]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun.97(5-6), 363–366 (1993).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B Condens. Matter32(5), 2788–2797 (1985).
[CrossRef] [PubMed]

Other (6)

X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV outputfrom a CW diode array-pumped tunable alexandrite laser,” in Lasers and Electro-Optics (OSA/CLEO, 2005).

M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe (Optical Society of America, Munich, 2013).

W. Koechner, Solid-State Laser Engineering, 4 ed., Springer Series in Optical Sciences (Springer, 1996), Vol. 1.

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).

M. Birnbaum and C. L. Fincher, “Self-Q-switched Nd+3:YAG and ruby lasers,” Proceedings of the IEEE57, 804-& (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of the single-mode diode pumped continuous-wave Alexandrite laser. SMD: Single-mode diode, BR plate: Birefringent plate for laser wavelength tuning, OC: output coupler.

Fig. 2
Fig. 2

A simplified energy level diagram of the Cr+3 ions in the Alexandrite crystal for the E//b orientation [23].

Fig. 3
Fig. 3

Measured variation of the fluorescence lifetime as a function of the crystal temperature for the 0.13% and 0.2% Cr3+ doped alexandrite crystals.

Fig. 4
Fig. 4

Emission spectra of the alexandrite crystal measured between 25°C and 300°C.

Fig. 5
Fig. 5

Measured output power variation as a function of the absorbed pump power for the cw alexandrite laser taken with various output couplers (OCs) having transmission values between 0.1% and 1.7%.

Fig. 6
Fig. 6

Measured temporal characteristics of the Alexandrite laser output in the cw regime.

Fig. 7
Fig. 7

(Left and Middle) Measured temporal characteristics of the Alexandrite laser output in self-Q-switching (SQS) regime at different time scales. The pulsewidth and the SQS repetition rate was measured to be 7 microseconds and 21 kHz respectively. (Right): Measured sample output beam profile in the SQS regime. These are typical measurements and vary at different SQS operation points. An overexposed beam profile was chosen intentionally, to make the higher order modes more visible.

Fig. 8
Fig. 8

Left: Measured variation of the inverse of the slope efficiency as a function of the inverse of the output coupling (Caird analysis). Right: Variation of measured lasing threshold as a function of output coupler transmission (Findlay-Clay analysis).

Fig. 9
Fig. 9

Measured variation of the cw output power and output wavelength of the Alexandrite laser as a function of the crystal temperature. The data were taken with a 0.5% output coupler at a pump power of around 150 mW.

Fig. 10
Fig. 10

Power efficiency curves measured at 25°C, 100 °C, and 200 °C using the 0.5% transmitting output coupler showed a monotonic decrease in the slope efficiency with increasing temperature.

Fig. 11
Fig. 11

(Left) Measured variation of the threshold pump power and the inverse lifetime as a function of temperature, both normalized to their respective room-temperature values. (Right) Measured variation of the emission intensity at 750 nm as a function of temperature.

Fig. 12
Fig. 12

Continuous-wave tuning curves of the alexandrite laser taken at the crystal temperatures of 25°C, 100°C, and 200°C by using the 0.5% output coupler. The pump power was 170 mW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 τ F ( T ) = 1 τ R + 1 τ NR ( T ) = 1 τ R + 1 τ NR0 Exp( ΔE kT ).
η = [ ( h v l h v p ) η p ( σ e σ E S A σ e ) ] T T + L = η 0 T T + L ,
P t h = π ( W p 2 + W c 2 ) h ν p 4 ( σ e σ E S A ) τ f η p ( 2 A g + T + L ) ,

Metrics