Abstract

Application of buckypaper to cholesteric liquid crystals (CLCs) is demonstrated. The buckypaper functions as a thin film resistant heater and a near-perfect absorber in this study. A planar CLC cell with buckypaper pasted onto one of its surfaces is used to develop a voltage-induced optical attenuator. The intensity of the reflection band of the CLC attenuator can decrease (increase) by the application (removal) of a single-pulse voltage, and the wavelength of the reflection band remains constant as the reflection intensity decreases (increases). The decrease in the reflection intensity is attributable to the cholesteric→isotropic phase transition of the LCs via heating of the buckypaper, and absorption by the black buckypaper. The increase in the reflectance results from the isotropic→cholesteric phase transition of the LCs through cooling of the environment. During cooling, the application of a low DC voltage to the buckypaper can keep the cell temperature constant because thermal equilibrium between the heating of the buckypaper and the cooling of the environment is established. Using this method, the blue phase of a CLC cell can stably exist for more than an hour at room temperature, without the need for a temperature stage, polymer materials or particular LCs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
    [CrossRef] [PubMed]
  2. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
    [CrossRef] [PubMed]
  3. A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
    [CrossRef]
  4. G. Lubkowski and D. N. Chigrin, “Carbon nanotubes: numerical simulation of absorbing properties in visible and infrared regime,” AIP Conf. Proc.1291, 130–132 (2010).
    [CrossRef]
  5. Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
    [CrossRef]
  6. M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
    [CrossRef]
  7. Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
    [CrossRef]
  8. Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
    [CrossRef] [PubMed]
  9. M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

2012

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

2011

M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
[CrossRef]

2010

G. Lubkowski and D. N. Chigrin, “Carbon nanotubes: numerical simulation of absorbing properties in visible and infrared regime,” AIP Conf. Proc.1291, 130–132 (2010).
[CrossRef]

2009

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

2007

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

2005

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
[CrossRef]

2004

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

2002

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Bernik, S.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Chen, Y. W.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Chigrin, D. N.

G. Lubkowski and D. N. Chigrin, “Carbon nanotubes: numerical simulation of absorbing properties in visible and infrared regime,” AIP Conf. Proc.1291, 130–132 (2010).
[CrossRef]

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Daneu, N.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Haillot, S.

M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
[CrossRef]

Han, C. S.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kim, D.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Kim, J.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Kramer, L.

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

Lafdi, K.

M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
[CrossRef]

Liang, R.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Liang, Z.

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

Lubkowski, G.

G. Lubkowski and D. N. Chigrin, “Carbon nanotubes: numerical simulation of absorbing properties in visible and infrared regime,” AIP Conf. Proc.1291, 130–132 (2010).
[CrossRef]

Memon, M. O.

M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
[CrossRef]

Miao, H. Y.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Oh, S. K.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Park, J. K.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Podlogar, M.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Recnik, A.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Richardson, J. J.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Rokunohe, J.

A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
[CrossRef]

Samardžija, Z.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Sato, M.

A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
[CrossRef]

Song, J. W.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Vengust, D.

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

Wang, B.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

Wang, Z.

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yoon, Y. H.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
[CrossRef]

Zhang, C.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

Zhang, M.

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Adv. Mater.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater.19(23), 4284–4287 (2007).
[CrossRef]

M. Podlogar, J. J. Richardson, D. Vengust, N. Daneu, Z. Samardžija, S. Bernik, and A. Rečnik, “Growth of transparent and conductive polycrystalline (0001)-ZnO films on glass substrates under low-temperature hydrothermal conditions,” Adv. Mater.22, 3136–3145 (2012).

AIP Conf. Proc.

G. Lubkowski and D. N. Chigrin, “Carbon nanotubes: numerical simulation of absorbing properties in visible and infrared regime,” AIP Conf. Proc.1291, 130–132 (2010).
[CrossRef]

Carbon

M. O. Memon, S. Haillot, and K. Lafdi, “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon49(12), 3820–3828 (2011).
[CrossRef]

Comp. Pt. A: Appl. Sci. Manufact.

Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Comp. Pt. A: Appl. Sci. Manufact.35(10), 1225–1232 (2004).
[CrossRef]

J. Mater. Chem.

A. Yoshizawa, M. Sato, and J. Rokunohe, “A blue phase observed for a novel chiral compound possessing molecular biaxiality,” J. Mater. Chem.15(32), 3285–3290 (2005).
[CrossRef]

Nanotechnology

Y. W. Chen, H. Y. Miao, M. Zhang, R. Liang, C. Zhang, and B. Wang, “Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission,” Nanotechnology20(32), 325302 (2009).
[CrossRef] [PubMed]

Nat. Mater.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Nature

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration and experimental setup of the CLC cell with buckypaper.

Fig. 2
Fig. 2

Dynamic reflection spectra of the CLC cell with buckypaper when single-pulse voltages of 5 V are applied for (a) 14 s, and (b) 18 s.

Fig. 3
Fig. 3

Dynamic detection of wavelength-integrated intensity (I) of the CLC cell with buckypaper at various voltages.

Fig. 4
Fig. 4

Thermal images of bare buckypaper (a) at zero applied voltage, and (b) at applied voltage of 5.0 V. Temperatures in the marked locations with empty squares (☐) are 23.3 °C and 87.3 °C. The insert shows the bare buckypaper.

Fig. 5
Fig. 5

Photographs and thermal images of the blue phase CLC cell with buckypaper (a) at zero applied voltage, and (b) at applied voltage of 2.5 V.

Metrics