Abstract

ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Susanta Kumar Das, Frank Güell, Ciarán Gray, Prasanta Kumar Das, Ruediger Grunwald, and Enda McGlynn, "ZnO nanorods for efficient third harmonic UV generation: erratum," Opt. Mater. Express 4, 1243-1243 (2014)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-4-6-1243

References

  • View by:
  • |
  • |
  • |

  1. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
    [CrossRef] [PubMed]
  2. D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
    [CrossRef] [PubMed]
  3. E. McGlynn, M. O. Henry, and J.-P. Mosnier, “ZnO wide bandgap semiconductor nanostructures: growth, characterisation and applications,” in Handbook of Nanoscience and Technology vol. II, A.V. Narlikar and Y.Y.Fu, eds. (Oxford University Press, 2009).
  4. G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
    [CrossRef]
  5. K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
    [CrossRef] [PubMed]
  6. S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
    [CrossRef]
  7. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
    [CrossRef]
  8. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals,” Opt. Express15(15), 9748–9754 (2007).
    [CrossRef] [PubMed]
  9. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
    [CrossRef] [PubMed]
  10. C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
    [CrossRef]
  11. D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
    [CrossRef]
  12. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
    [CrossRef]
  13. J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
    [CrossRef]
  14. S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
    [CrossRef]
  15. D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
    [CrossRef]
  16. D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
    [CrossRef]
  17. F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
    [CrossRef]
  18. F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
    [CrossRef] [PubMed]
  19. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995).
    [CrossRef] [PubMed]
  20. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
    [CrossRef]
  21. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005).
    [CrossRef] [PubMed]
  22. G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006).
    [CrossRef]
  23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
    [CrossRef] [PubMed]
  24. http://www.rp-photonics.com/chromatic_dispersion.html .

2012 (1)

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

2011 (2)

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

2009 (2)

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

2008 (3)

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
[CrossRef]

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

2007 (3)

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultra-thin ZnO, GaN, and AlN crystals,” Opt. Express15(15), 9748–9754 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006).
[CrossRef]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

2005 (3)

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005).
[CrossRef] [PubMed]

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

2003 (1)

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

Abraham, J. K.

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

Al-Hilli, S. M.

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Baratto, C.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Biswas, M.

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

Bock, M.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Byrne, D.

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

Chelnokov, E.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

Chen, B.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Chen, J.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Comini, E.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Cornet, A.

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

Cullen, J.

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

Das, S. K.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Elsaesser, T.

Faglia, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Fisker, C.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
[CrossRef]

Goni, A. R.

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

Goñi, A. R.

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

Griebner, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Grunwald, R.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Güell, F.

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

Guo, D.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Hahm, J.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Henry, M. O.

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

Hughes, G.

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

Iwata, K.

Jiang, H.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Jining, X.

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

Kobayashi, Y.

Kumar, K.

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

Kumar, N.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Lee, H.

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Lee, K.

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Lee, S.

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Leung, Y. H.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Li, J.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Lu, P. X.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Marine, W.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

McGlynn, E.

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

Morante, J. R.

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

Neumann, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

ONeil, C.

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Osso, J. O.

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

Ossó, J. O.

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

Öst, A.

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Ozerov, I.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

Pedersen, K.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
[CrossRef]

Pedersen, T. G.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
[CrossRef]

Petrov, G. I.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

Pfuch, A.

Qian, S.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Rotermund, F.

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Sberveglieri, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Schmidbauer, M.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Schwanke, C.

Seeber, W.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Shcheslavskiy, V.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

Sridhar, D.

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

Steinmeyer, G.

S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express19(18), 16985–16995 (2011).
[CrossRef] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006).
[CrossRef]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005).
[CrossRef] [PubMed]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Stibenz, G.

G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006).
[CrossRef]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005).
[CrossRef] [PubMed]

Strålfors, P.

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Takada, H.

Tao, Y. T.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Torizuka, K.

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

Varadan, V. K.

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

Wang, H.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Wang, K.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Wang, X.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Wang, Z. L.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Willander, M.

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Xu, J.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Yakovlev, V. V.

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

Yoshitomi, D.

Yuan, L. Y.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Zappettini, A.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Zha, M.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Zhang, C.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Zhang, F.

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

Zhou, J.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. K. Das, M. Bock, C. ONeil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett.93(18), 181112 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett.92(23), 233116 (2008).
[CrossRef]

G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient third-harmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett.83(19), 3993–3995 (2003).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett.87(17), 171108 (2005).
[CrossRef]

Cryst. Growth Des. (1)

D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des.10(5), 2400–2408 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron.12(2), 286–296 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys.102(8), 084304 (2007).
[CrossRef]

Nano Lett. (2)

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett.12(2), 833–838 (2012).
[CrossRef] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro," Nanoscale Res. Lett.5(6), 1063–1071 (2010).
[CrossRef]

Nanoscale (1)

D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale3(4), 1675–1682 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology20(31), 315701 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi5(8c), 2671–2674 (2008).
[CrossRef]

Proc. SPIE (1)

D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE6528, 65281L (2007).
[CrossRef]

Sens. Actuators B Chem. (1)

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem.109(1), 2–6 (2005).
[CrossRef]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Superlattices Microstruct. (1)

F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct.45(4-5), 271–276 (2009).
[CrossRef]

Thin Solid Films (1)

D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films518(16), 4489–4492 (2010).
[CrossRef]

Other (2)

E. McGlynn, M. O. Henry, and J.-P. Mosnier, “ZnO wide bandgap semiconductor nanostructures: growth, characterisation and applications,” in Handbook of Nanoscience and Technology vol. II, A.V. Narlikar and Y.Y.Fu, eds. (Oxford University Press, 2009).

http://www.rp-photonics.com/chromatic_dispersion.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) FESEM data (45° tilted-view image) of the CBD grown ZnO nanorod sample (inset, cross-sectional view); (b) θ-2θ XRD data from the same sample; (c) and (d) show FESEM data for the VPT-grown ZnO nanorod sample grown on sapphire.

Fig. 2
Fig. 2

(a) THG spectra in the region 197 nm to 332 nm for both the CBD and VPT grown ZnO nanorod samples as well as a bare quartz substrate, under focused illumination by the Ti:sapphire laser; (b) intensity dependence data for both the CBD and VPT grown ZnO nanorod samples.

Fig. 3
Fig. 3

(a) iFROG trace, (b) FROG and (c) temporal pulse profile measured on ZnO nanorods grown by CBD method; (d) iFROG trace, (e) FROG and (f) temporal pulse profile measured on ZnO nanorods grown by VPT method (in all cases data are taken without any ND filter in the path).

Fig. 4
Fig. 4

iFROG trace, (b) FROG and (c) temporal pulse profile measured on ZnO nanorods grown by CBD growth method (with ND filter in path with optical density setting 0.04 + 0.04); (d) iFROG trace, (e) FROG and (f) temporal pulse profile measured on ZnO nanorods grown by CBD growth method (with ND filter in path with optical density setting 0.04 + 0.2); (g) iFROG trace, (h) FROG and (i) temporal pulse profile measured on ZnO nanorods grown by CBD growth method (with ND filter in path with optical density setting 0.04 + 0.4).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ= τ 0 1+ ( 4ln( β 2 τ 0 2 ) ) 2

Metrics