Abstract

The relation between ablation threshold fluence upon femtosecond laser pulse irradiation and the average dissociation energy density of silicate based multicomponent glass is studied. A simple model based on multiphoton absorption quantifies the absorbed energy density at the ablation threshold fluence. This energy density is compared to a calculated energy density which is necessary to decompose the glass compound into its atomic constituents. The results confirm that this energy density is a crucial intrinsic material parameter for the description of the femtosecond laser ablation threshold fluence of dielectrics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
    [CrossRef]
  3. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
    [CrossRef]
  4. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
    [CrossRef]
  5. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
    [CrossRef]
  6. C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
    [CrossRef]
  7. N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
    [CrossRef]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  9. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
    [CrossRef]
  10. N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
    [CrossRef]
  11. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
    [CrossRef]
  12. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
    [CrossRef]
  13. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
    [CrossRef]
  14. B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009).
    [CrossRef]
  15. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
    [CrossRef]
  16. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
    [CrossRef]
  17. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
    [CrossRef]
  18. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B13(1), 216–222 (1996).
    [CrossRef]
  19. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
    [CrossRef]
  20. G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008).
    [CrossRef]
  21. T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
    [CrossRef]
  22. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
    [CrossRef]
  23. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
    [CrossRef]
  24. D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
    [CrossRef]
  25. M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
    [CrossRef]
  26. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
    [CrossRef]
  27. M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
    [CrossRef]
  28. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).
  29. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013).
    [CrossRef] [PubMed]
  30. V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007).
    [CrossRef]
  31. D. Bäuerle, Laser Processing and Chemistry, 4th ed. (Springer-Verlag, 2011)
  32. L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005).
    [CrossRef]
  33. M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).
  34. N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
    [CrossRef]
  35. S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
    [CrossRef]
  36. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
    [CrossRef]
  37. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  38. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004).
    [CrossRef]
  39. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
    [CrossRef]
  40. A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol.45, 244–254 (2004).
  41. S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
    [CrossRef]
  42. M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
    [CrossRef]
  43. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B73(3), 035101 (2006).
    [CrossRef]
  44. K. H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947).
    [CrossRef]
  45. K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947).
    [CrossRef] [PubMed]

2013 (5)

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013).
[CrossRef] [PubMed]

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
[CrossRef]

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

2012 (2)

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
[CrossRef]

2011 (3)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
[CrossRef]

2010 (3)

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
[CrossRef]

2009 (1)

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009).
[CrossRef]

2008 (1)

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008).
[CrossRef]

2007 (2)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007).
[CrossRef]

2006 (1)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B73(3), 035101 (2006).
[CrossRef]

2005 (4)

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005).
[CrossRef]

M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

2004 (6)

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol.45, 244–254 (2004).

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004).
[CrossRef]

2003 (2)

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

2002 (2)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

1999 (1)

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

1998 (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

1996 (3)

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

1993 (1)

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

1982 (1)

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

1947 (2)

K. H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947).
[CrossRef]

K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947).
[CrossRef] [PubMed]

Achtstein, A. W.

Ams, M.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Ashmore, J.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013).
[CrossRef] [PubMed]

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Beresna, M.

Bonse, J.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
[CrossRef]

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Bourgeade, A.

C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
[CrossRef]

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Chahid-Erraji, A.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Chen, J. K.

V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007).
[CrossRef]

Cheng, C. F.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Chimier, B.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Chowdhury, I. H.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
[CrossRef]

Christensen, B. H.

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009).
[CrossRef]

Davis, J.

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008).
[CrossRef]

Dekker, P.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Eberstein, M.

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
[CrossRef]

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Ehrentraut, L.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Ehrt, D.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Eichler, H. J.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

Feng, D. H.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Fuerbach, A.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Galvan-Sosa, M.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

Gaudin, J.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Gawelda, W.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Grehn, M.

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
[CrossRef]

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Griga, N.

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Gross, S.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Gruzdev, V. E.

V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007).
[CrossRef]

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Hallo, L.

C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
[CrossRef]

Harkin, A.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Hashida, M.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

Höfner, M.

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Huggins, M. L.

K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947).
[CrossRef] [PubMed]

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Itina, T.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

Itina, T. E.

N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
[CrossRef]

Ito, S.

M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).

Jia, T. Q.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Jiang, L.

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Kautek, W.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Kazansky, P. G.

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

Kieffer, J. C.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Kittel, T.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Krüger, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Kuroiwa, Y.

M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).

Lancry, M.

Lassonde, P.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Lebugle, M.

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

Legare, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

Légaré, F.

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Li, R. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Li, X. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Little, D. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

Liu, J. M.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Mazur, E.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Mermillod-Blondin, A.

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Mézel, C.

C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
[CrossRef]

Miese, C. T.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Nolte, S.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Petrov, G. M.

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008).
[CrossRef]

Poumellec, B.

Preuss, S.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

Priven, A. I.

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol.45, 244–254 (2004).

Puerto, D.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Reinhardt, F.

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B73(3), 035101 (2006).
[CrossRef]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

Rudolph, P.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Sanner, N.

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013).
[CrossRef] [PubMed]

Schüler, H.

Semerok, A.

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Sentis, M.

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Seuthe, T.

M. Grehn, T. Seuthe, W.-J. Tsai, M. Höfner, A. W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H. J. Eichler, and J. Bonse, “Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses,” Opt. Mater. Express3(12), 2132–2140 (2013).
[CrossRef]

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express3(6), 755–764 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Shcheblanov, N. S.

N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
[CrossRef]

Shen, M.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

Siegel, J.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Silaeva, E. P.

N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
[CrossRef]

Solis, J.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Späth, M.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

Spielmann, C.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
[CrossRef]

Stuke, M.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

Sun, H. Y.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Sun, K. H.

K. H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947).
[CrossRef]

K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947).
[CrossRef] [PubMed]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005).
[CrossRef]

Tsai, W. J.

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

Tsai, W.-J.

Tünnermann, A.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Utéza, O.

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

Varkentina, N.

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

Vidal, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

von der Linde, D.

Wang, H. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Watanabe, M.

M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).

Will, M.

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

Withford, M. J.

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Wu, A. Q.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
[CrossRef]

Xu, N. S.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Xu, X.

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
[CrossRef]

Xu, Z. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

Zhang, Y.

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

Appl. Phys. Lett. (7)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett.64(23), 3071–3073 (1994).
[CrossRef]

N. Sanner, O. Utéza, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Toward determinism in surface damaging of dielectrics using few-cycle laser pulses,” Appl. Phys. Lett.96(7), 071111 (2010).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003).
[CrossRef]

M. Grehn, F. Reinhardt, J. Bonse, M. Eberstein, and T. Seuthe, “Response to “Comment on 'Femtosecond laser-induced ablation of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy,”' [Appl. Phys. Lett. 102, 196101 (2012)],” Appl. Phys. Lett.102(19), 196102 (2013).
[CrossRef]

T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett.62(23), 3049 (1993).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

V. E. Gruzdev and J. K. Chen, “Laser-induced ionization and intrinsic breakdown of wide band-gap solids,” Appl. Phys., A Mater. Sci. Process.90(2), 255–261 (2007).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003).
[CrossRef]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond-and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999).
[CrossRef]

Appl. Surf. Sci. (2)

N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, “Electronic excitation and relaxation processes in wide band gap dielectric materials in the transition region of the Keldysh parameter,” Appl. Surf. Sci.258(23), 9417–9420 (2012).
[CrossRef]

S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci.186(1-4), 364–368 (2002).
[CrossRef]

Glass Technol. (1)

A. I. Priven, “General method for calculating the properties of oxide glasses and glass forming melts from their composition and temperature,” Glass Technol.45, 244–254 (2004).

Int. J. Heat Mass Tran. (1)

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Tran.48(3-4), 487–499 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. H. Sun, “Fundamental condition of glass formation,” J. Am. Ceram. Soc.30(9), 277–281 (1947).
[CrossRef]

J. Appl. Phys. (3)

N. Varkentina, N. Sanner, M. Lebugle, M. Sentis, and O. Utéza, “Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency,” J. Appl. Phys.114(17), 173105 (2013).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys.96(9), 5316–5323 (2004).
[CrossRef]

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys.95(9), 5166–5171 (2004).
[CrossRef]

J. Non-Cryst. Solids (1)

D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B- At. Mol. Opt. (1)

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B- At. Mol. Opt.41(2), 025601 (2008).
[CrossRef]

J. Phys. Colloid Chem. (1)

K. H. Sun and M. L. Huggins, “Energy Additivity in Oxygen-containing Crystals and Glasses,” J. Phys. Colloid Chem.51(2), 438–443 (1947).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. Express (3)

Phys. Plasmas (2)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949 (2002).
[CrossRef]

C. Mézel, A. Bourgeade, and L. Hallo, “Surface structuring by ultrashort laser pulses: A review of photoionization models,” Phys. Plasmas17(11), 113504 (2010).
[CrossRef]

Phys. Rev. B (5)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71(11), 115109 (2005).
[CrossRef]

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B79(15), 155424 (2009).
[CrossRef]

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B84(9), 094104 (2011).
[CrossRef]

A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B72(8), 085128 (2005).
[CrossRef]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B73(3), 035101 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80(18), 4076–4079 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys.76(3), 036502 (2013).
[CrossRef] [PubMed]

Reports Res. Lab. Asahi Glass (1)

M. Watanabe, Y. Kuroiwa, and S. Ito, “Study of femtosecond laser ablation of multicomponent glass,” Reports Res. Lab. Asahi Glass55, 27–31 (2005).

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).

Other (2)

D. Bäuerle, Laser Processing and Chemistry, 4th ed. (Springer-Verlag, 2011)

M. Grehn, T. Seuthe, F. Reinhardt, M. Höfner, N. Griga, M. Eberstein, and J. Bonse, “Debris of potassium-magnesium silicate glass generated by femtosecond laser-induced ablation in air: an analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. (2013), doi:.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plot of the squared ablation diameter D2 vs. the peak fluence F0 for LiGe50Si25 (red triangles) and Borofloat glass (black squares). Note the semi-logarithmic data representation. The solid lines correspond to least-squares-fits with the method proposed in [37]. The arrows indicate the ablation threshold obtained from the fits. The horizontal and vertical bars correspond to the statistical errors.

Fig. 2
Fig. 2

Maximum depth of the ablation craters dmax vs. the incident peak fluence F0 for LiGe50Si25 (red circles) and Borofloat glass (black squares). The solid lines correspond to a least-squares-fit using Eq. (3).

Fig. 3
Fig. 3

SFM surface topography of a selection of laser-induced ablation craters on Borofloat (upper row) and LiGe50Si25 (lower row) glasses. The corresponding horizontal cross-sectional profiles (open symbols) along with the plots of Eq. (4) (solid lines) are shown on the right hand side.

Fig. 4
Fig. 4

Ablation threshold fluence Φ th , d i a vs. the calculated dissociation energy E d i s s c a l c for the investigated silicate glasses (black squares), Fused silica (green triangle) [17] and sapphire (blue rhomb) [17]. Additionally, values for tellurite and bismuthate glasses (red circles) from [33] are presented.

Fig. 5
Fig. 5

Absorbed energy density at the ablation threshold vs. the calculated dissociation energy density for the investigated silicate glasses (black squares), Fused silica (green triangle) and Sapphire (blue rhomb). The solid (red) line represents the identity of both entities.

Tables (6)

Tables Icon

Table 1 Stoichiometric batch composition of the glass samples

Tables Icon

Table 2 Incident ablation threshold fluences Fth,dia obtained by the D2-method along with the ablation threshold fluence Φth,dia corrected by the reflection losses (R). All error bars are derived from the fitting procedure. The refractive indexes nd are taken from [40]. The Fresnel reflectivity is calculated neglecting the difference in n of the two wavelengths 589 and 800 nm, which is not significantly affecting the values of R here

Tables Icon

Table 3 Ablation threshold fluences Fth,dia and 3-PA coefficients α3dep of the glasses derived from fits of the crater depth vs. the applied laser fluence F0 (Eq. (3)) and ablation threshold fluences Φth,dia with the considered reflection losses of the air-glass interface. Additionally, nonlinear absorption coefficients from z-scan technique are listed [42]. Error values are statistical deviations obtained from the least-squares-fitting procedure

Tables Icon

Table 4 Ablation threshold fluences F th , d e p and multiphoton absorption (m-PA) coefficients α m d e p of fused silica and sapphire derived from fits of the crater depth vs. the incident laser fluence F0 (taken from Ref [17].) and the ablation threshold fluences Φ th , d e p with the considered reflection losses of the air-glass interface. Additionally, the band gap energies and the refractive indices are listed

Tables Icon

Table 5 Molar mass and dissociation energy of the glass oxides

Tables Icon

Table 6 Density, molar mass, dissociation energy, and band gap energy of the investigated glasses

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dI(z) dz = α m I m (z).
dF(z) dz = α m τ m1 (1R) m1 F m (z).
d max = τ m1 (m1) α m dep (1R) m1 [ 1 F th,dep m1 1 F 0 m1 ].
d(r)= τ² 2 α 3 (1R)² [ 1 F th ² exp{4r²/ w 0 ²} F 0 ² ],
ε b = i mol % i ε i MeO
E diss calc = ε b ρ i mol % i M i = ε b ρ M
E th m-PA = d Φ dep d z | z0 = α m τ m1 [ Φ th,dep ] m

Metrics