Abstract

A Nd3+:YAG single crystal core optical fiber waveguide was successfully fabricated by the sapphire tube-assisted CO2 laser-heated pedestal growth (LHPG) technique with decent quality. Furthermore, a stress detection (mapping) technique with submicron spatial resolution was demonstrated with Nd3+ as distributive stress detection probe and scanning near field optical microscope (SNOM) as detection tool.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt.24(15), 2362–2368 (1985).
    [CrossRef] [PubMed]
  2. C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977).
    [CrossRef]
  3. E. Snitzer, “Frequency control of a Nd3+ glass laser,” Appl. Opt.5(1), 121–125 (1966).
    [CrossRef] [PubMed]
  4. E. Snitzer, “Neodymium glass laser,” Proc. 3rd Int. Conf. Quantum Electronics, Paris, France, 999–1019(1963).
  5. X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
    [CrossRef]
  6. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, “Stress-induced birefringence in large-mode-area micro-structured optical fibers,” Opt. Express13(10), 3637–3646 (2005).
    [CrossRef] [PubMed]
  7. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968).
    [CrossRef] [PubMed]
  8. H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997).
    [CrossRef]
  9. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+:YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012).
    [CrossRef]
  10. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  11. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  12. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997).
    [CrossRef] [PubMed]
  13. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
    [CrossRef] [PubMed]
  14. D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
    [CrossRef]
  15. Joint Commission on Powder Diffraction Standards (JCPDS) card No. 88–2048, International Center for Diffraction Data, PCPDFWIN version 2.2 (2001).
  16. M. J. F. Digonnet and C. J. Gaeta, “Theoretical analysis of optical fiber laser amplifiers and oscillators,” Appl. Opt.24(3), 333–342 (1985).
    [CrossRef] [PubMed]
  17. S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
    [CrossRef]
  18. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
    [CrossRef]
  19. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
    [CrossRef]

2012 (1)

2011 (1)

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

2009 (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

2008 (1)

2006 (1)

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

2005 (1)

2004 (1)

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

1997 (2)

R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997).
[CrossRef] [PubMed]

H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997).
[CrossRef]

1991 (1)

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

1985 (2)

1977 (1)

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977).
[CrossRef]

1968 (1)

1966 (1)

1962 (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Bahr, D. F.

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

Burrus, C. A.

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977).
[CrossRef]

Byer, R. L.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Chandler, P. J.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Chen, P. Y.

Coldren, L. A.

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

DeShazer, L. G.

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

Digonnet, M. J. F.

Eakins, D. E.

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

Fejer, M. M.

Field, S. J.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Foster, J. D.

Gaeta, C. J.

Galanciak, D.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Hanna, D. C.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Harrington, J. A.

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt.36(24), 5934–5940 (1997).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Held, M.

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

Hsu, K. Y.

Hua, H.

H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997).
[CrossRef]

Huang, K. Y.

Huang, S. L.

Jaque, D.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Jaque, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Jheng, D. Y.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kaminska, A.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Kobyakov, S.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Kumar, G. A.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Laustsen, B. T.

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Limpert, J.

Magel, G. A.

Malinowski, M.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Norton, M. G.

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

Nubling, R. K.

Osterink, L. M.

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Pokhrel, M.

Ray, N.

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Röser, F.

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Sardar, D. K.

Schmidt, O.

Schreiber, T.

Schultz, H.

Shepherd, D. P.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Snitzer, E.

E. Snitzer, “Frequency control of a Nd3+ glass laser,” Appl. Opt.5(1), 121–125 (1966).
[CrossRef] [PubMed]

E. Snitzer, “Neodymium glass laser,” Proc. 3rd Int. Conf. Quantum Electronics, Paris, France, 999–1019(1963).

Suchocki, A.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Townsend, P. D.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Tropper, A. C.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Tünnermann, A.

Vohra, Y. K.

H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997).
[CrossRef]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Yeh, P. S.

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Zhang, L.

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

Zhu, X. S.

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

Zhuo, W. J.

Appl. Opt. (5)

Appl. Phys. B (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, E. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett.88(23), 234102 (2006).
[CrossRef]

H. Hua and Y. K. Vohra, “Pressure-induced blueshift of Nd3+ fluorescence emission in YAlO3:Near infrared pressure sensor,” Appl. Phys. Lett.71(18), 2602 (1997).
[CrossRef]

C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–384 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion implanted Nd:YAG waveguide lasers,” IEEE J. Quantum Electron.27(3), 428–433 (1991).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. Cryst. Growth (1)

D. E. Eakins, M. Held, M. G. Norton, and D. F. Bahr, “A study of fracture and defects in single crystal YAG,” J. Cryst. Growth267(3-4), 502–509 (2004).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Proc. SPIE (1)

X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415 (2011).
[CrossRef]

Other (2)

Joint Commission on Powder Diffraction Standards (JCPDS) card No. 88–2048, International Center for Diffraction Data, PCPDFWIN version 2.2 (2001).

E. Snitzer, “Neodymium glass laser,” Proc. 3rd Int. Conf. Quantum Electronics, Paris, France, 999–1019(1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A photograph of Nd3+:YAG single crystal rod regrowth with conventional CO2 LHPG technique.

Fig. 2
Fig. 2

The schematic layout of the sapphire tube-assisted LHPG setup and CO2 laser beam path.

Fig. 3
Fig. 3

(a) SEM, (b) HRTEM image, and (c) SAED pattern along <1 1 1> zone of the core of Nd3+:YAG single crystal optical fiber.

Fig. 4
Fig. 4

(a) The SEM image of the core of Nd3+:YAG SCCOF. The numbers 1, 2, 3, and 4 indicate the positions of Raman and emission acquisition, (b) The Micro-Raman spectra, and (c) The emission spectra of 4F3/24I9/2 transitions of initial Nd3+:YAG crystal rod and the core of Nd3+:YAG SCCOF at positions 1, 2, 3, and 4.

Fig. 5
Fig. 5

The emission peak shifts of 4F3/24I9/2 transition with respect to that of the initial Nd3+:YAG crystal rod and their estimated refractive indices at 1.06 µm on positions 1, 2, 3, and 4 in the core region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D f D s = ( V s V f ) 1 / 2
Rstress ( kBar ) = 0. 75 · Δ E Nd 3 +      
Δ V / V = 3 × R stress / E YAG
Δ n vol = ( n 2 1 ) ( n 2 + 2 ) / 6n × Δ V / V

Metrics