Abstract

Modified YAG:Ce, Gd phosphors were synthesized by vacuum solid-state reaction. With the increase of Gd3+ concentration, the emission spectra of YAG:Ce, Gd phosphors shifted greatly to longer wavelength. At 400 K, YAG:Ce, Gd phosphors with 20 at.% Gd3+ could maintain 78% of room temperature intensity. Within the maximum junction temperature of a high brightness LED (around 400 K), the color coordinates of phosphors changed very little. In addition, white LEDs with a color rendering index of 82, luminous efficiency of 109 lm/W and color temperature of 5656 K were achieved by using optimized YAG:Ce, Gd phosphors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
    [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  3. N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
    [CrossRef]
  4. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
    [CrossRef]
  5. H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
    [CrossRef]
  6. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
    [CrossRef]
  7. G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967).
    [CrossRef]
  8. R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
    [CrossRef]
  9. H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
    [CrossRef]
  10. M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
    [CrossRef]
  11. L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
    [CrossRef]
  12. H. S. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors,” J. Lumin.128(10), 1570–1576 (2008).
    [CrossRef]
  13. H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
    [CrossRef]
  14. Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
    [CrossRef]
  15. K. Y. Jung and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12: Tb3+,Ce3+ phosphors prepared by spray pyrolysis,” J. Lumin.126(2), 469–474 (2007).
    [CrossRef]
  16. Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
    [CrossRef]
  17. S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
    [CrossRef]
  18. Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
    [CrossRef]
  19. M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
    [CrossRef]
  20. C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
    [CrossRef]
  21. P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film eletroluminescent displays,” Mater. Sci. Eng. Rep.21(4), 171–219 (1998).
    [CrossRef]
  22. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
    [CrossRef]

2012 (1)

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

2011 (2)

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

2010 (3)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

2009 (3)

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
[CrossRef]

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
[CrossRef]

2008 (3)

C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
[CrossRef]

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

H. S. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

2007 (2)

K. Y. Jung and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12: Tb3+,Ce3+ phosphors prepared by spray pyrolysis,” J. Lumin.126(2), 469–474 (2007).
[CrossRef]

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
[CrossRef]

2004 (2)

Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

1998 (1)

P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film eletroluminescent displays,” Mater. Sci. Eng. Rep.21(4), 171–219 (1998).
[CrossRef]

1978 (1)

R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
[CrossRef]

1977 (1)

M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
[CrossRef]

1967 (1)

G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967).
[CrossRef]

Bachmann, V.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
[CrossRef]

Blasse, G.

G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967).
[CrossRef]

Cheng, B. M.

Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
[CrossRef]

Chiang, C. C.

C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
[CrossRef]

Choi, B. C.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Dong, Y.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Fujimoto, Y.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

Fujioka, K.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

Hao, Z. D.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

He, J. H.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Holloway, P. H.

P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film eletroluminescent displays,” Mater. Sci. Eng. Rep.21(4), 171–219 (1998).
[CrossRef]

Hon, M. H.

C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
[CrossRef]

Im, W. B.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
[CrossRef]

Jang, H. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jeon, D. Y.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Jeong, J. H.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Jiang, J. Q.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Jung, H. C.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Jung, K. Y.

K. Y. Jung and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12: Tb3+,Ce3+ phosphors prepared by spray pyrolysis,” J. Lumin.126(2), 469–474 (2007).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kim, S. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Kim, Y. S.

H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
[CrossRef]

H. S. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

Kottaisamy, M.

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

Krupke, W. F.

R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
[CrossRef]

Lee, D. C.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Lee, D. K.

H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
[CrossRef]

Lee, H. W.

K. Y. Jung and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12: Tb3+,Ce3+ phosphors prepared by spray pyrolysis,” J. Lumin.126(2), 469–474 (2007).
[CrossRef]

Li, F.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Li, H. J.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Liang, C.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Lin, Y. S.

Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
[CrossRef]

Liu, R. S.

Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
[CrossRef]

Lu, T. C.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Lu, Z. W.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Luo, Y. S.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Ma, B. Y.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Meijerink, A.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
[CrossRef]

Mishra, J.

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

Mizuno, M.

M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
[CrossRef]

Moon, B. K.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Mukherjee, S.

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

Nishiura, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

Noguchi, T.

M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
[CrossRef]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
[CrossRef]

Park, J. Y.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Qi, J.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Rack, P. D.

P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film eletroluminescent displays,” Mater. Sci. Eng. Rep.21(4), 171–219 (1998).
[CrossRef]

Ramachandra Rao, M. S.

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

Ronda, C.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Seeta Rama Raju, G.

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

Shao, Q. Y.

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

Su, Q.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
[CrossRef]

Sudarsan, V.

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

Tanabe, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

Thiyagarajan, P.

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

Tsai, M. S.

C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
[CrossRef]

Tyagi, A. K.

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

Vatsa, R. K.

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

Wang, L.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Wang, X. J.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Weber, M. J.

R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
[CrossRef]

Wei, N.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Wu, M. M.

Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
[CrossRef]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Yamada, T.

M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
[CrossRef]

Yang, H. S.

H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
[CrossRef]

H. S. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Zhang, J. H.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Zhang, W.

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

Zhang, X.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. W. Lu, and J. Qi, “Transparent Ce:YAG ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett.101(6), 061902 (2012).
[CrossRef]

R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978).
[CrossRef]

Chem. Mater. (1)

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater.21(10), 2077–2084 (2009).
[CrossRef]

J. Alloy. Comp. (1)

Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93-xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application,” J. Alloy. Comp.498(2), 199–202 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. C. Jung, J. Y. Park, G. Seeta Rama Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of red emission in aluminum garnet yellow phosphors,” J. Am. Ceram. Soc.94(2), 551–555 (2011).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

J. Chem. Phys. (1)

G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys.47(12), 5139–5145 (1967).
[CrossRef]

J. Electrochem. Soc. (2)

C. C. Chiang, M. S. Tsai, and M. H. Hon, “Luminescent properties of cerium-activated garnet series phosphors: structure and temperature effects,” J. Electrochem. Soc.155(6), B517–B520 (2008).
[CrossRef]

Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG: Ce, Gd phosphor,” J. Electrochem. Soc.152(6), J41–J45 (2005).
[CrossRef]

J. Lumin. (4)

S. Mukherjee, V. Sudarsan, R. K. Vatsa, and A. K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+, Tb3+) doped YAG:Ce nano-phosphors,” J. Lumin.129(1), 69–72 (2009).
[CrossRef]

H. S. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors,” J. Lumin.128(10), 1570–1576 (2008).
[CrossRef]

K. Y. Jung and H. W. Lee, “Enhanced luminescent properties of Y3Al5O12: Tb3+,Ce3+ phosphors prepared by spray pyrolysis,” J. Lumin.126(2), 469–474 (2007).
[CrossRef]

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectra emission intensity of Y3Al5O12: Ce3+ phosphors via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

J. Phys. Chem. Solids (1)

Y. X. Pan, M. M. Wu, and Q. Su, “Tailor photoluminescence of YAG:Ce phosphors through various methods,” J. Phys. Chem. Solids65(5), 845–850 (2004).
[CrossRef]

Mater. Chem. Phys. (1)

H. S. Yang, D. K. Lee, and Y. S. Kim, “Spectra variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys.114(2-3), 665–669 (2009).
[CrossRef]

Mater. Res. Bull. (1)

M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M. S. Ramachandra Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull.43(7), 1657–1663 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

Y. X. Pan, M. M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphors,” Mater. Sci. Eng. B106(3), 251–256 (2004).
[CrossRef]

Mater. Sci. Eng. Rep. (2)

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phorphors in phosphors-converted white lighting-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film eletroluminescent displays,” Mater. Sci. Eng. Rep.21(4), 171–219 (1998).
[CrossRef]

Opt. Mater. (1)

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater.33(5), 688–691 (2011).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Yogyo Kyokaishi (1)

M. Mizuno, T. Yamada, and T. Noguchi, “Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2 O3 at high temperatures,” Yogyo Kyokaishi85(11), 543–548 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) XRD pattern of (Y0.98-xGdx)3Al5O12:Ce0.06 phosphors with different Gd3+-doping concentration. The inset shows the expend view of (420) peak; (b) Lattice parameter of (Y0.98-xGdx)3Al5O12:Ce0.06 phosphors as the function of Gd3+-doping concentration.

Fig. 2
Fig. 2

The room temperature PL emission spectra (a) and excitation spectra (b) of (Y0.98-xGdx)3Al5O12:Ce0.06 phosphors (λex = 460 nm, λem = 520 nm).

Fig. 3
Fig. 3

The integrated emission intensity of (Y0.78Gd0.2)3Al5O12:Ce0.06 (x = 0.20) phosphors as the function of temperature. The inset shows the PL emission spectra of (Y0.78Gd0.2)3Al5O12:Ce0.06 (x = 0.20) phosphors recorder at different temperature (λex = 460 nm).

Fig. 4
Fig. 4

CIE chromaticity coordinates of (Y0.78Gd0.2)3Al5O12:Ce0.06 (x = 0.20) phosphors as the function of temperature.

Fig. 5
Fig. 5

Electroluminescence spectra of white LEDs fabricated with prepared (Y0.98-xGdx)3Al5O12:Ce0.06 phosphors. The forward bias current is 20 mA.

Tables (1)

Tables Icon

Table 1 Optical properties of white LEDs using modified (Y0.98-xGdx)3Al5O12:Ce0.06 phosphors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin 2 θ = λ 2 4 a 2 ( h 2 + k 2 + l 2 )

Metrics