Abstract

Broadband-light-sensitized upconversion (UC) photon management phenomenon in La3Ga5GeO14:Cr3+,Yb3+,Er3+ is reported, featuring the concentrated broadband noncoherent light excitable at room temperature. Energy transfer among Cr3+/Yb3+/Er3+ in the Stokes and UC luminescence processes reveals that Yb3+ as a “bridge” is requisite for Cr3+-sensitized UC luminescence of Er3+. Low Cr3+ contents are preferred for UC luminescence of Yb3+-Er3+, since it would be quenched by high Cr3+ contents. The designed UC emissions 2H11/24I15/2 and 4S3/24I15/2 of Er3+ at around 510 ~560 nm are proposed to through Energy transfer upconversion (ETU) mechanism based on the Cr3+-Yb3+ dimer model with superexchange interaction according to crystallographic data and the decay curves of Er3+ UC emission. This research may open up a new perspective to design novel photonic materials excitable by broadband noncoherent light for improving the photoresponse of solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  2. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
    [CrossRef]
  3. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
    [CrossRef]
  4. J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
    [CrossRef]
  5. R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
    [CrossRef] [PubMed]
  6. T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010).
    [CrossRef]
  7. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  8. X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
    [CrossRef] [PubMed]
  9. D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
    [CrossRef] [PubMed]
  10. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
    [CrossRef]
  11. A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
    [CrossRef] [PubMed]
  12. Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
    [CrossRef] [PubMed]
  13. I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
    [CrossRef]
  14. S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
    [CrossRef]
  15. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
    [CrossRef] [PubMed]
  16. V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
    [CrossRef]
  17. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
    [CrossRef] [PubMed]
  18. W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
    [CrossRef]
  19. X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012).
    [CrossRef] [PubMed]
  20. Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenze,” Ann. Phys.437(1-2), 55–75 (1948).
    [CrossRef]
  21. F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
    [CrossRef]
  22. L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
    [CrossRef] [PubMed]
  23. P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
    [CrossRef]
  24. L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
    [CrossRef] [PubMed]
  25. C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
    [CrossRef] [PubMed]
  26. C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003).
    [CrossRef]
  27. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  28. R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
    [CrossRef]
  29. S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
    [CrossRef]
  30. C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
    [CrossRef]
  31. L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
    [CrossRef]
  32. W. Z. Yan, F. Liu, Y. Y. Lu, X. J. Wang, M. Yin, and Z. W. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express18(19), 20215–20221 (2010).
    [CrossRef] [PubMed]
  33. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).
  34. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
    [CrossRef]
  35. J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
    [CrossRef]
  36. R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
    [CrossRef]
  37. P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
    [CrossRef] [PubMed]
  38. P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
    [CrossRef] [PubMed]
  39. R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
    [CrossRef]

2013 (3)

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
[CrossRef] [PubMed]

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

2012 (5)

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

2011 (6)

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

2010 (6)

T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010).
[CrossRef]

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

W. Z. Yan, F. Liu, Y. Y. Lu, X. J. Wang, M. Yin, and Z. W. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express18(19), 20215–20221 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
[CrossRef] [PubMed]

2008 (1)

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

2007 (1)

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

2006 (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

2005 (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

2004 (3)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
[CrossRef] [PubMed]

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

2003 (2)

C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003).
[CrossRef]

P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
[CrossRef]

2001 (1)

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

2000 (2)

R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

1988 (1)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

1948 (1)

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenze,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Aboshyan-Sorgho, L.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Aebischer, A.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bérard, M.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

Besnard, C.

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Bettinelli, M.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
[CrossRef]

Bian, Z. Q.

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

Biner, D.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Biner, D. A.

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

Bünzli, J. C.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Bureau, B.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Butashin, A. V.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Cantuel, M.

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

Capobianco, J. A.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
[CrossRef] [PubMed]

Castellano, F. N.

T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010).
[CrossRef]

Cheetham, A. K.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

Chen, D. Q.

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Chen, F. F.

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

Chen, Z. Q.

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

Curry, R. J.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

de Araújo, C. B.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

de Wild, J.

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

Demidovich, A. A.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Dong, B.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Dong, G. P.

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

Eliseeva, S. V.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

Etchart, I.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

Förster, Th.

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenze,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
[CrossRef] [PubMed]

P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
[CrossRef]

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

Gillin, W. P.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

González, J.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
[CrossRef]

Grimm, J.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Güdel, H. U.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
[CrossRef] [PubMed]

P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
[CrossRef]

C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003).
[CrossRef]

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
[CrossRef]

Hauser, A.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Heer, S.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Hernández, I.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

Huang, C. H.

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

Huang, X. Y.

X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
[CrossRef] [PubMed]

Huignard, A.

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

Hummelen, J. C.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Jiang, T.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Ju, Y. G.

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Kittilstved, K. R.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Koptev, V. G.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Krämer, K.

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
[CrossRef]

Krämer, K. W.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Kuipers, L.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Ledemi, Y.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Lei, L.

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Li, Y. J.

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

Liang, X. F.

X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
[CrossRef] [PubMed]

Liu, F.

Liu, N.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Liu, X. G.

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012).
[CrossRef] [PubMed]

Lu, Y. Y.

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Maduro, J. A.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Martín-Rodríguez, R.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
[CrossRef]

Meijerink, A.

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Messaddeq, Y.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Mill, B. V.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Morgantini, P. Y.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

Naccache, R.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
[CrossRef] [PubMed]

Nozary, H.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

Pan, Z. W.

Pattison, P.

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Petoud, S.

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

Piccinelli, F.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

Piguet, C.

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Poulain, M.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Pshenichnikov, M. S.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Qin, W.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Rai, V. K.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Rath, J. K.

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

Reinhard, C.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
[CrossRef] [PubMed]

C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003).
[CrossRef]

Renero-Lecuna, C.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

Richards, B. S.

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Rodríguez, F.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

Schropp, R. E. I.

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

Shan, J. N.

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

Shkadarevich, A. P.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Singh-Rachford, T. N.

T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010).
[CrossRef]

Song, E. H.

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

Song, H. W.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Speghini, A.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

Sun, L. D.

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

Suyver, J. F.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
[CrossRef]

Uddi, M.

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

Valiente, R.

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
[CrossRef]

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

van Sark, J. H. M.

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

Verhagen, E.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Vetrone, F.

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
[CrossRef] [PubMed]

Visser, C.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Wang, J.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Wang, X. J.

Wang, X. M.

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

Wang, Y. S.

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Wang, Z. X.

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Wenger, O.

R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
[CrossRef]

Wenger, O. S.

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
[CrossRef]

Xie, X. J.

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012).
[CrossRef] [PubMed]

Xu, L.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Xu, S.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Xu, W.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Yan, C. H.

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

Yan, W. Z.

Yang, A. P.

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Yao, N.

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

Ye, S.

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

Yin, A. X.

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

Yin, M.

Yin, Z.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Yu, D. C.

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

Zhang, Q. Y.

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
[CrossRef] [PubMed]

Zhang, S.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Zhang, X. H.

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

Zhang, Y. W.

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

Zhao, D.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Zhu, Y. S.

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

Zou, W. Q.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

J. N. Shan, M. Uddi, N. Yao, and Y. G. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater.20(20), 3530–3537 (2010).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer, J. C. Bünzli, A. Hauser, and C. Piguet, “Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex,” Angew. Chem. Int. Ed. Engl.50(18), 4108–4112 (2011).
[CrossRef] [PubMed]

Ann. Phys. (1)

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenze,” Ann. Phys.437(1-2), 55–75 (1948).
[CrossRef]

Appl. Phys. Lett. (1)

R. Martín-Rodríguez, R. Valiente, and M. Bettinelli, “Room-temperature green upconversion luminescence in LaMgAl11O19:Mn2+, Yb3+ upon infrared excitation,” Appl. Phys. Lett.95(9), 091913 (2009).
[CrossRef]

Chem. Commun. (Camb.) (3)

D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang, and Y. S. Wang, “Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals,” Chem. Commun. (Camb.)48(47), 5898–5900 (2012).
[CrossRef] [PubMed]

Z. Yin, Y. S. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. W. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.)49(36), 3781–3783 (2013).
[CrossRef] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011).
[CrossRef] [PubMed]

Chem. Eur. J. (1)

P. Gerner, C. Reinhard, and H. U. Güdel, “Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-Doped Mn2+ halides,” Chem. Eur. J.10(19), 4735–4741 (2004).
[CrossRef] [PubMed]

Chem. Mater. (1)

C. Renero-Lecuna, R. Martín-Rodríguez, R. Valiente, J. González, F. Rodríguez, K. W. Krämer, and H. U. Güdel, “Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4: 2%Er3+,20%Yb3+,” Chem. Mater.23(15), 3442–3448 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

R. Valiente, O. Wenger, and H. U. Güdel, “New photon upconversion processes in Yb3+ doped CsMnCl3 and RbMnCl3,” Chem. Phys. Lett.320(5-6), 639–644 (2000).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

ChemSusChem (1)

R. Naccache, F. Vetrone, and J. A. Capobianco, “Lanthanide-Doped Upconverting Nanoparticles: Harvesting Light for Solar Cells,” ChemSusChem6(8), 1308–1311 (2013).
[CrossRef] [PubMed]

Coord. Chem. Rev. (3)

T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev.254(21-22), 2560–2573 (2010).
[CrossRef]

F. F. Chen, Z. Q. Chen, Z. Q. Bian, and C. H. Huang, “Sensitized luminescence from lanthanides in d–f bimetallic complexes,” Coord. Chem. Rev.254(9-10), 991–1010 (2010).
[CrossRef]

L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, and C. Piguet, “Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes,” Coord. Chem. Rev.256(15-16), 1644–1663 (2012).
[CrossRef]

Energy Environ. Sci. (1)

J. de Wild, A. Meijerink, J. K. Rath, J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011).
[CrossRef]

Inorg. Chem. (1)

P. Gerner, O. S. Wenger, R. Valiente, and H. U. Güdel, “Green and red light emission by upconversion from the near-IR in Yb3+ doped CsMnBr3.,” Inorg. Chem.40(18), 4534–4542 (2001).
[CrossRef] [PubMed]

Inorg. Mater. (1)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater.24, 579 (1988).

J. Am. Chem. Soc. (1)

L. Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. Bünzli, P. Y. Morgantini, K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, and C. Piguet, “Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes,” J. Am. Chem. Soc.134(30), 12675–12684 (2012).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002).
[CrossRef]

V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles,” J. Appl. Phys.103(10), 103526 (2008).
[CrossRef]

J. Chem. Phys. (1)

C. Reinhard, K. Krämer, D. A. Biner, and H. U. Güdel, “Cooperative radiative and nonradiative effects in K2NaScF6 codoped with V3+ and Er3+.,” J. Chem. Phys.120(7), 3374–3380 (2004).
[CrossRef] [PubMed]

J. Fluoresc. (1)

X. F. Liang, X. Y. Huang, and Q. Y. Zhang, “Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response,” J. Fluoresc.19(2), 285–289 (2009).
[CrossRef] [PubMed]

J. Lumin. (2)

C. Reinhard and H. U. Güdel, “Cooperative processes in Pr3+ and V3+ codoped Cs2NaScCl6,” J. Lumin.102–103, 373–379 (2003).
[CrossRef]

P. Gerner, K. Krämer, and H. U. Güdel, “Broad-band Cr5+ sensitized Er3+ luminescence in YVO4,” J. Lumin.102–103, 112–118 (2003).
[CrossRef]

J. Mater. Chem. (2)

S. Ye, Y. J. Li, D. C. Yu, G. P. Dong, and Q. Y. Zhang, “Room-temperature upconverted white light from GdMgB5O10: Yb3+, Mn2+,” J. Mater. Chem.21(11), 3735–3739 (2011).
[CrossRef]

I. Etchart, I. Hernández, A. Huignard, M. Bérard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion: Yb3+ and Ho3+ co-doped Ln2BaZnO5,” J. Mater. Chem.21, 1387–1394 (2011).
[CrossRef]

J. Mater. Chem. C (1)

S. Ye, D. C. Yu, X. M. Wang, E. H. Song, and Q. Y. Zhang, “Anomalous upconversion emission of Eu3+-Yb3+-MoO6 in double perovskite induced by a laser,” J. Mater. Chem. C1(8), 1588–1594 (2013).
[CrossRef]

Nano Lett. (1)

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Nanoscale (1)

A. X. Yin, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals,” Nanoscale2(6), 953–959 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater.11(10), 842–843 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater.27(6), 1111–1130 (2005).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, F. Piccinelli, A. Speghini, and M. Bettinelli, “Temperature dependence and temporal dynamics of Mn2+ upconversion luminescence sensitized by Yb3+ in codoped LaMgAl11O19,” Phys. Rev. B82(7), 075117 (2010).
[CrossRef]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diffuse reflection spectra of the samples.

Fig. 2
Fig. 2

Stokes luminescence and excitation spectra of LGG:C, LGG:CE and LGG:CYE(all the spectra are normalized).

Fig. 3
Fig. 3

Stokes luminescence intensity variations of LGG: xCr3+, 0.12Yb3+, 0.06Er3+, LGG: xCr3+, 0.06Er3+(a) and LGG: 0.10Cr3+, yYb3+, 0.06Er3+(b) on Cr contents x and Yb contents y.

Fig. 4
Fig. 4

Stokes luminescence decay curves of LGG: xCr3+, 0.12Yb3+, 0.06Er3+ (a, b) and LGG: 0.10Cr3+, yYb3+, 0.06Er3+ (c, d)

Fig. 5
Fig. 5

UC luminescence spectra of LGG: 0.10Cr3+, 0.12Yb3+, 0.06Er3+ (upper) and LGG: 0.12Yb3+, 0.06Er3+ (lower) pumped by a 976 nm laser diode(~60 mW mm−2). Inset of each graph is the intensity dependence of different UC emission peak(integrated intensity) on pump power (in Log-Log plot).

Fig. 6
Fig. 6

UC emission of LGG: xCr3+, 0.12Yb3+, 0.06Er3+ (a) and LGG: xCr3+, 0.06Er3+ (b) pumped by a 976 nm laser diode(~60 mW mm−2). Inset of graph(a) is the enlarge spectrum of sample with x = 0.30.

Fig. 7
Fig. 7

(a)UC luminescence spectra of LGG: 0.05Cr3+, 0.12Yb3+, 0.06Er3+ and LGG: 0.12Yb3+, 0.06Er3+ pumped by an OPO pulsed laser(620 nm) with the same power density (about 50 mW mm-2); (b) the monitored 548 nm UC emission intensity pumped by different wavelength(blue filled circle); for comparison, excitation peak at around 650 nm of LGG: 0.06Er3+ is also illustrated(magenta line).

Fig. 8
Fig. 8

UC luminescence decay curves of LGG: 0.10Cr3+, yYb3+, 0.06Er3+ (a) and LGG: xCr3+, 0.12Yb3+, 0.06Er3+ (b) pumped by an OPO pulsed laser (λex = 620 nm, λem = 548 nm).

Fig. 9
Fig. 9

(a)UC luminescence spectra of LGG: 0.05Cr3+, 0.12Yb3+, 0.06Er3+ and LGG: 0.12Yb3+, 0.06Er3+ upon excitation of concentrated broadband noncoherent 590 nm~800 nm light of solar simulator(~18 mW mm−2); (b)Sketch of UC model for LGG:CYE.

Metrics