Abstract

The photoluminescence, persistent luminescence and thermoluminescence properties of Mg(0.998-x)Mn0.002BixGeO3 (x = 0, 0.001, 0.005, 0.01, 0.02) were investigated. A Mn-Bi co-doped sample with x = 0.005 showed the most intense red persistent luminescence due to the Mn2+:4T26A1 transition peaked at 680 nm. The persistent luminescence intensity of the sample with x = 0.005 was 30 times higher than that of the Mn singly doped sample (x = 0). All Mn-Bi co-doped samples showed an additional glow peak at approximately 320 K. From the continuous decrease of Bi3+ luminescence intensity in storage process by UV light, it was suggested that Bi itself functions as an electron-trapping center. We proposed an energy level diagram which explains red persistent mechanism in MgGeO3:Mn-Bi.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
    [CrossRef]
  2. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
    [CrossRef]
  3. Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
    [CrossRef]
  4. S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, 1998).
  5. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
    [CrossRef]
  6. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
    [CrossRef]
  7. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  8. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
    [CrossRef]
  9. A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
    [CrossRef] [PubMed]
  10. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  11. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
    [CrossRef]
  12. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
    [CrossRef] [PubMed]
  13. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
    [CrossRef] [PubMed]
  14. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
    [CrossRef] [PubMed]
  15. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
    [CrossRef] [PubMed]
  16. M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
    [CrossRef]
  17. S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
    [CrossRef]
  18. A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
    [CrossRef]
  19. Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
    [CrossRef]
  20. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  21. Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).
  22. W. Lehmann, “Activator and co-activators in calcium sulfide phosphors,” J. Lumin.5(2), 87–107 (1972).
    [CrossRef]
  23. S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
    [CrossRef]
  24. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  25. P. Boutinaud, “Revisiting the spectroscopy of the Bi3+ ion in oxide compounds,” Inorg. Chem.52(10), 6028–6038 (2013).
    [CrossRef] [PubMed]
  26. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  27. G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
    [CrossRef]
  28. A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
    [CrossRef]
  29. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
    [CrossRef]
  30. M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
    [CrossRef]
  31. Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
    [CrossRef]
  32. M. Ozima, “Structure of orthophyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3,” Acta Crystallogr. C39(9), 1169–1172 (1983).
    [CrossRef]
  33. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  34. D. Curie, Luminescence in Crystals (Dunod, 1960).
  35. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
    [CrossRef]

2013

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

P. Boutinaud, “Revisiting the spectroscopy of the Bi3+ ion in oxide compounds,” Inorg. Chem.52(10), 6028–6038 (2013).
[CrossRef] [PubMed]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
[CrossRef]

2012

2011

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

2010

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
[CrossRef]

2009

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

2008

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

2007

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

2003

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

2001

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

1998

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

1997

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

1996

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

1994

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

1983

M. Ozima, “Structure of orthophyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3,” Acta Crystallogr. C39(9), 1169–1172 (1983).
[CrossRef]

1979

G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

1976

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1972

W. Lehmann, “Activator and co-activators in calcium sulfide phosphors,” J. Lumin.5(2), 87–107 (1972).
[CrossRef]

1968

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Abdukayum, A.

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

Amiot, C. L.

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Bessière, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Bessodes, M.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Blasse, G.

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Boutinaud, P.

P. Boutinaud, “Revisiting the spectroscopy of the Bi3+ ion in oxide compounds,” Inorg. Chem.52(10), 6028–6038 (2013).
[CrossRef] [PubMed]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Cetin, D.

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

Chanéac, C.

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Chen, D.

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Chen, J.-T.

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

Chuang, Y.-J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Cong, Y.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Da, N.

Eeckhout, K. V.

Folkerts, H. F.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Gourier, D.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Hamstra, M. A.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Iwasaki, M.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Jacquart, S.

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Kim, D. N.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Krolikowski, S.

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Lecointre, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Lehmann, W.

W. Lehmann, “Activator and co-activators in calcium sulfide phosphors,” J. Lumin.5(2), 87–107 (1972).
[CrossRef]

LeMasne, Q.

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Li, B.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Li, W.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Liang, S.

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Lin, Y.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Liu, F.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Maldiney, T.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Meijerink, A.

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Morinaga, K.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Murata, T.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Nan, C.-W.

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Ntziachristos, V.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Ozima, M.

M. Ozima, “Structure of orthophyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3,” Acta Crystallogr. C39(9), 1169–1172 (1983).
[CrossRef]

Pan, L.

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Pan, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Peng, M.

Poelman, D.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Poleman, D.

Poort, S. H. M.

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

Priolkar, K.

Qiu, J.

S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Richard, C.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Scherman, D.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Shannon, R.

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Smet, P. F.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Sraiki, G.

Srivastava, A. M.

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

Steen, A. C.

G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

Stiegelschmitt, A.

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

Tanabe, S.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
[CrossRef]

Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

Tanaka, K.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Tang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Ueda, J.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
[CrossRef]

Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).

Van den Eeckhout, K.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

Viana, B.

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. V. Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express19(11), 10131–10137 (2011).
[CrossRef] [PubMed]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

Wang, H.

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Wang, X.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Wang, X.-

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Wondraczek, L.

Wu, J.

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Xie, J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Xu, S.

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Yan, W.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Yan, X.-P.

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

Yue, S.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Zhang, L.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

Zhang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Zhao, J. X.

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Zhao, Q.

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

Zhen, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Zhou, S.

S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhou, X.

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Zhuang, Y.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
[CrossRef]

Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Acta Crystallogr. A

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Acta Crystallogr. C

M. Ozima, “Structure of orthophyroxene-type and clinopyroxene-type magnesium germanium oxide MgGeO3,” Acta Crystallogr. C39(9), 1169–1172 (1983).
[CrossRef]

Adv. Funct. Mater.

S. Zhou and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Appl. Phys. Express

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express6(5), 052602 (2013).
[CrossRef]

Inorg. Chem.

P. Boutinaud, “Revisiting the spectroscopy of the Bi3+ ion in oxide compounds,” Inorg. Chem.52(10), 6028–6038 (2013).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc.135(38), 14125–14133 (2013).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc.133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

J. Ceram. Soc. Jpn.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrO-Al2O3 Phosphor,” J. Ceram. Soc. Jpn.104(1208), 322–326 (1996).
[CrossRef]

J. Chem. Phys.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

J. Electrochem. Soc.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc.143(8), 2670–2673 (1996).
[CrossRef]

S. H. M. Poort, D. Cetin, A. Meijerink, and G. Blasse, “The luminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc.144(6), 2179–2183 (1997).
[CrossRef]

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X.- Wang, “Enhanced red phosphorescence in MgGeO3 : Mn2 + by addition of Yb3 + ions,” J. Electrochem. Soc.156(4), H272–H275 (2009).
[CrossRef]

J. Lumin.

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in clinoenstatite,” J. Lumin.129(12), 1527–1530 (2009).
[CrossRef]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+,” J. Lumin.129(10), 1140–1143 (2009).
[CrossRef]

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

W. Lehmann, “Activator and co-activators in calcium sulfide phosphors,” J. Lumin.5(2), 87–107 (1972).
[CrossRef]

J. Mater. Chem.

M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

J. Phys. Chem. C

Y. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” J. Phys. Chem. C2, 217–222 (2012).

J. Phys. Chem. Solids

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetrabotrate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Mater.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Mater.3(4), 2536–2566 (2010).
[CrossRef]

Mater. Chem. Phys.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphors,” Mater. Chem. Phys.80(1), 1–5 (2003).
[CrossRef]

Y. Lin, C.-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen, and S. Xu, “Preparation and characterization of long afterglow M2MgSi2O7-based (M: Ca, Sr, Ba) photoluminescent phosphors,” Mater. Chem. Phys.82(3), 860–863 (2003).
[CrossRef]

Nat. Mater.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Proc. Natl. Acad. Sci. U.S.A.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Sci Rep

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci Rep3, 1554–1563 (2013).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater.

M. Iwasaki, D. N. Kim, K. Tanaka, T. Murata, and K. Morinaga, “Red phosphorescence properties of Mn ions in MgO–GeO2 compounds,” Sci. Technol. Adv. Mater.4(2), 137–142 (2003).
[CrossRef]

Sensors (Basel Switzerland)

C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors (Basel Switzerland)8(5), 3082–3105 (2008).
[CrossRef]

Solid State Commun.

G. Blasse and A. C. Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

Other

D. Curie, Luminescence in Crystals (Dunod, 1960).

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

X-ray diffraction patterns of non-doped Mg1GeO3 and Mg(0.998-x)Mn0.002BixGeO3 (x = 0, 0.001, 0.005, 0.01, 0.02) samples.

Fig. 2
Fig. 2

Diffuse reflectance spectra of the non-doped MgGeO3 and MgGeO3:0.002Mn-xBi (x = 0, 0.001, 0.005, 0.01, 0.02) samples.

Fig. 3
Fig. 3

PL spectra of the MgGeO3: 0.002Mn-xBi (x = 0, 0.001, 0.005, 0.01, 0.02) samples under 300 nm excitation.

Fig. 4
Fig. 4

PLE spectra (upper) of the MgGeO3: 0.002Mn-xBi (x = 0, 0.001, 0.005, 0.01, 0.02) samples with monitored Mn2+ luminescence at 670 nm. Diffuse reflectance spectra (lower; the same plot shown in Fig. 2) are shown for reference.

Fig. 5
Fig. 5

(a) PLE spectra of the Mn-Bi co-doped MgGeO3 sample with x = 0.005 monitored at 360 (violet dotted), 405 (blue dashed) and 670 nm (red solid) and (b) absorption spectra of the non-doped, Mn singly doped, Mn-Bi co-doped and Bi singly doped samples.

Fig. 6
Fig. 6

Images of the non-doped and 0.002Mn-xBi doped MgGeO3 (x = 0, 0.001, 0.005, 0.01, 0.02) samples (a) under fluorescent lamp, (b) under 254 nm light excitation and (c) 10 sec after shutting off the excitation lamp.

Fig. 7
Fig. 7

PL spectrum by 300 nm excitation (red solid) and persistent luminescence spectrum (black dashed) 10 s after shutting off the excitation light (x = 0.005).

Fig. 8
Fig. 8

Decay curves of persistent luminescence of the SrAl2O4:Eu-Dy, ZnGa2O4:Cr, MgGeO3:Mn(x = 0), and MgGeO3:Mn-Bi(x = 0.05) samples.

Fig. 9
Fig. 9

(a) TL glow curves of the MgGeO3: 0.002Mn-xBi (x = 0, 0.001, 0.005, 0.01, 0.02) samples after excitation for 10 min by UV light source in the range of 250-400 nm at 100 K with heating rate 10 K/min and (b) (lower): Bi content dependence of the relative TL integrated intensity in the range from 260 to 360 K; (upper): photographs of corresponding samples taken at R. T. 10 s after shutting off 254 nm excitation light.

Fig. 10
Fig. 10

(a) PL spectra of the Mn-Bi co-doped (x = 0.005) (upper, dotted and red solid) and Bi singly doped sample (lower, dashed) at an excitation wavelength of 300 nm. The PL spectra were measured immediately after exciting at 300 nm (dotted) and with 3 min of continuous irradiation with 300 nm light (red solid). (b) Time dependence of the PL intensity of the Mn-Bi co-doped (x = 0.005) and Bi singly doped samples obtained by monitoring at 360 and 680 nm.

Fig. 11
Fig. 11

Energy level scheme of MgGeO3:Mn-Bi. Arrows represents the energy or wavelength of each transitions and energy levels labeled by 1 and 2 represent Bi3+ energy levels in two different symmetric sites.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B i 2 O 3 +3 O 2 MgGe O 3 2B i Mg + V Mg '' +9 O O x (+3G e Ge x )

Metrics