Abstract

We experimentally studied the nonlinear response of topological insulator (TI): Bi2Te3 at both the optical and microwave band, and found that the absorbance of topological insulator decreases with the increase of the incident power and reaches at a constant value once the incident power exceeds a threshold. By the open-aperture Z-scan and balanced twin detector measurement techniques, the optical saturable absorption property of TI: Bi2Te3 from 800 nm to 1550 nm was experimentally demonstrated. Based on a power dependent microwave transmittance experimental setup, TI: Bi2Te3 was also identified to show a saturation intensity of ~12 μW/cm2 and a normalized modulation depth of ~70%. We argue that the optical (resp. microwave) saturable absorption in topological insulator is a natural consequence of the Pauli-blocking principle of the electrons filled in the bulk insulating state (resp. surface metallic state). Our experimental results illustrate the potential photonic applications of TI: Bi2Te3 at both the optical and microwave band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
    [CrossRef]
  2. P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011).
    [CrossRef]
  3. J. E. Moore, “The birth of topological insulators,” Nature464(7286), 194–198 (2010).
    [CrossRef] [PubMed]
  4. J. E. Moore, “Topological insulators: The next generation,” Nat. Phys.5(6), 378–380 (2009).
    [CrossRef]
  5. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
    [CrossRef] [PubMed]
  6. L. Fidkowski, “Entanglement spectrum of topological insulators and superconductors,” Phys. Rev. Lett.104(13), 130502 (2010).
    [CrossRef] [PubMed]
  7. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
    [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  9. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
    [CrossRef]
  10. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
    [CrossRef]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  12. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
    [CrossRef]
  13. Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012).
    [CrossRef] [PubMed]
  14. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
    [CrossRef] [PubMed]
  15. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express4(1), 1–6 (2014).
    [CrossRef]
  16. Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
    [CrossRef]
  17. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett.38(24), 5212–5215 (2013).
    [CrossRef] [PubMed]
  18. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013).
    [CrossRef] [PubMed]
  19. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express21(24), 29516–29522 (2013).
    [CrossRef]
  20. P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).
  21. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
    [CrossRef]
  22. Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
    [CrossRef] [PubMed]
  23. J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
    [CrossRef] [PubMed]
  24. D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
    [CrossRef] [PubMed]
  25. L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
    [CrossRef]
  26. J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
    [CrossRef]
  27. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
    [CrossRef] [PubMed]
  28. J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
    [CrossRef]
  29. V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
    [CrossRef] [PubMed]

2014 (1)

2013 (5)

2012 (6)

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
[CrossRef] [PubMed]

Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012).
[CrossRef] [PubMed]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

2011 (1)

P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011).
[CrossRef]

2010 (9)

J. E. Moore, “The birth of topological insulators,” Nature464(7286), 194–198 (2010).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

L. Fidkowski, “Entanglement spectrum of topological insulators and superconductors,” Phys. Rev. Lett.104(13), 130502 (2010).
[CrossRef] [PubMed]

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

2009 (4)

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

J. E. Moore, “Topological insulators: The next generation,” Nat. Phys.5(6), 378–380 (2009).
[CrossRef]

2004 (2)

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

1994 (1)

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Abramski, K. M.

Allain, P. E.

P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011).
[CrossRef]

Balandin, A. A.

D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
[CrossRef] [PubMed]

Bao, Q.

Bao, Q. L.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Berger, C.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Bestwick, A. J.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Cai, Z.

Cha, J. J.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Chen, L.

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

Chen, S. Q.

Chen, X.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Chen, Y.

Cheng, H.

Conrad, E. H.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Cui, Y.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Dai, X.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Dai, Z. T.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Dang, W.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

Dong, Z.

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

Elim, H. I.

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

Fan, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Fang, Z.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Feng, R.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Fidkowski, L.

L. Fidkowski, “Entanglement spectrum of topological insulators and superconductors,” Phys. Rev. Lett.104(13), 130502 (2010).
[CrossRef] [PubMed]

First, P. N.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Fuchs, J. N.

P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011).
[CrossRef]

Gallagher, P.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Gao, W. X.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Giman, Y.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Godbout, N.

Goldhaber-Gordon, D.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Goyal, V.

D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
[CrossRef] [PubMed]

Grodecki, K.

Hao, G. L.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

He, J.

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

He, K.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Heer, W. A.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Horak, J.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Huang, H. H.

Huang, Y.

Huang, Z. Y.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Inoue, M.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Ji, W.

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

Jia, J. F.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Kockaert, P.

Kong, D.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

Kong, D. S.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Kulbachinskii, V. A.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Li, H.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

Li, J.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Li, L. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Li, T. B.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Li, X. B.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Li, Y.

Li, Y. Y.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Lin, Z.

Liu, C. X.

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Liu, H.

Liu, M.

Liu, M. H.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Liu, Y.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Liu, Y. D.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Liu, Z.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

Loh, K. P.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Lostak, P.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Lu, S. B.

Luo, A. P.

Luo, Z.

Luo, Z. C.

Ma, G. H.

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

Ma, X. C.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Macherzynski, W.

Marchenkov, A. N.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Massar, S.

Meister, S.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature464(7286), 194–198 (2010).
[CrossRef] [PubMed]

J. E. Moore, “Topological insulators: The next generation,” Nat. Phys.5(6), 378–380 (2009).
[CrossRef]

Negishi, H.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Ni, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Ogbazghi, A. Y.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Paletko, P.

Peng, H.

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

Peng, H. L.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Ping, L. K.

Qi, X.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

Qi, X. L.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Ren, L.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Sasaki, M.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Shen, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Sobon, G.

Song, Z. M.

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Sotor, J.

Su, C. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Sun, W. X.

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Takase, K.

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Tan, W. D.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Tang, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013).
[CrossRef] [PubMed]

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Tang, P. H.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

Tang, S. H.

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

Teweldebrhan, D.

D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
[CrossRef] [PubMed]

Virally, S.

Wang, G.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Wang, L. L.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Wang, Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wang, Y. Y.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Wang, Z. T.

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

Wen, S.

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

Wen, S. C.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013).
[CrossRef] [PubMed]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett.38(24), 5212–5215 (2013).
[CrossRef] [PubMed]

Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012).
[CrossRef] [PubMed]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

Weng, J.

Williams, J. R.

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

Xie, G. Q.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Xie, X. C.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Xu, B.

Xu, H.

Xu, W. C.

Xue, Q. K.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, L. W.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Ye, C.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Yu, J.

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

Zhang, H.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett.38(24), 5212–5215 (2013).
[CrossRef] [PubMed]

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013).
[CrossRef] [PubMed]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012).
[CrossRef] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, H. J.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Zhang, S. C.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Zhang, X. Q.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

Zhao, C. J.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express21(2), 2072–2082 (2013).
[CrossRef] [PubMed]

Y. Chen, C. J. Zhao, H. H. Huang, S. Q. Chen, P. H. Tang, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol.31(17), 2857–2863 (2013).
[CrossRef]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett.38(24), 5212–5215 (2013).
[CrossRef] [PubMed]

Z. W. Zheng, C. J. Zhao, S. B. Lu, Y. Chen, Y. Li, H. Zhang, and S. C. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20(21), 23201–23214 (2012).
[CrossRef] [PubMed]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express20(25), 27888–27895 (2012).
[CrossRef] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

Zhao, L. M.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Zheng, X. W.

Zheng, Z. W.

Zhong, J. X.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Zhu, X. G.

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Zou, X. H.

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

Zou, Y. H.

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (1)

Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, “Intrinsic Topological insulator Bi2Te3 thin films on Si and their thickness limit,” Adv. Mater.22(36), 4002–4007 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101(21), 211106 (2012).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked wavelength-tunable dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Eur. Phys. J. B (1)

P. E. Allain and J. N. Fuchs, “Klein tunneling in graphene: optics with massless electrons,” Eur. Phys. J. B83(3), 301–317 (2011).
[CrossRef]

IEEE Photonics J. (2)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photonics J.4(3), 869–876 (2012).
[CrossRef]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped1645-nm Er:YAG ceramic laser,” IEEE Photonics J.5(2), 1500707 (2013).

J. Appl. Phys. (1)

J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, and W. X. Sun, “Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,” J. Appl. Phys.95(11), 6381–6386 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li, and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22(11), 4921–4926 (2012).
[CrossRef]

J. Phys. Chem. B (1)

C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108(52), 19912–19916 (2004).
[CrossRef]

Nano Lett. (3)

D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, “Few-layer nanoplates of Bi2 Se3 and Bi2Te3 with highly tunable chemical potential,” Nano Lett.10(6), 2245–2250 (2010).
[CrossRef] [PubMed]

J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, “Magnetic doping and Kondo effect in Bi2Se3 nanoribbons,” Nano Lett.10(3), 1076–1081 (2010).
[CrossRef] [PubMed]

D. Teweldebrhan, V. Goyal, and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals,” Nano Lett.10(4), 1209–1218 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Nat. Phys. (2)

J. E. Moore, “Topological insulators: The next generation,” Nat. Phys.5(6), 378–380 (2009).
[CrossRef]

H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys.5(6), 438–442 (2009).
[CrossRef]

Nature (1)

J. E. Moore, “The birth of topological insulators,” Nature464(7286), 194–198 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

J. He, L. Chen, Z. Dong, S. Wen, and J. Yu, “Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation,” Opt. Fiber Technol.15(3), 290–295 (2009).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

V. A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, “Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals,” Phys. Rev. B Condens. Matter50(23), 16921–16930 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. Fidkowski, “Entanglement spectrum of topological insulators and superconductors,” Phys. Rev. Lett.104(13), 130502 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Preparation process of TI: Bi2Te3 nano-platelets.

Fig. 2
Fig. 2

(a) Raman spectra of Bi2Te3 nano-platelets and Bi2Te3 bulk, respectively. (b) AFM image of the Bi2Te3 nano-sheets. (c) X-ray diffraction pattern of Bi2Te3 nano-platelets. (d) The linear absorption spectra of Bi2Te3 nano-platelets.

Fig. 3
Fig. 3

Schematic of the microwave generation and saturable absorption measurement, ECL: external cavity laser, LN-MZM: LiNbO3 Mach-Zehnder modulator, IL: 50/100 GHz optical inter-leaver, EDFA: erbium-doped fiber amplifier, ATT: optical attenuator, PD: photodiode, EA: electrical amplifier.

Fig. 4
Fig. 4

Optical spectrum at the position of a, b, c, d in Fig. 3, respectively.

Fig. 5
Fig. 5

Nonlinear saturable absorption features of TI: Bi2Te3 nano-platelets at different microwave frequencies.

Fig. 6
Fig. 6

Relation between microwave frequency and (a) saturable intensity. (b) modulation depth.

Fig. 7
Fig. 7

Schematic of the Z-scan experimental setup.

Fig. 8
Fig. 8

Relation between normalized transmittance and input peak intensity, Case 1: measured by continuously increasing the input power and Case 2: by decreasing the input power.

Fig. 9
Fig. 9

Open Z-scan curve at 800 nm with input power from 3.4 GW/cm2 to 28 GW/cm2.

Fig. 10
Fig. 10

Relation between normalized transmittance and input peak intensity at 1570 nm.

Fig. 11
Fig. 11

Schematic of (a) optical and (b) microwave saturable absorption in TI: Bi2Te3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 - ( a s 1 + I I s a t ) - a n s .

Metrics