Abstract

Direct plasma etching is a powerful method for producing antireflective nanostructures on optical polymers, such as cycloolefin polymers. The approved process requires the deposition of a very thin initial layer followed by etching. The structure depth achievable in this way is limited to approximately 100 nm. Due to this limitation, the reflectance performance of materials produced by plasma etching is sufficient in the visible spectral range for normal light incidence on planar substrates only. By depositing and etching an additional organic layer on top of the structure, its antireflective performance can be significantly broadened. This type of double structure is adequate for light incidence angles of up to 60° on planar and curved substrates.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).
  2. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt.41(16), 3075–3083 (2002).
    [CrossRef] [PubMed]
  3. M. Minot, “The angular reflectance of single-layer gradient refractive-index films,” J. Opt. Soc. Am.67(8), 1046–1050 (1977).
    [CrossRef]
  4. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  5. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  6. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
    [CrossRef]
  7. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
    [CrossRef]
  8. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  9. S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
    [CrossRef]
  10. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).
  11. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech.20, 58–61 (2004).
  12. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express15(20), 13108–13113 (2007).
    [CrossRef] [PubMed]
  13. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, and A. Tünnermann, “Plasma-etched organic layers for antireflection purposes,” Appl. Opt.50(9), C31–C35 (2011).
    [CrossRef] [PubMed]
  14. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  15. W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
    [CrossRef] [PubMed]
  16. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX,” Optical Manufacturing and Testing VII, Proc. SPIE 6671 (2007).
  17. U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser, “Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB),” Opt. Mater. Express1(1), 101–107 (2011).
    [CrossRef]
  18. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992).
    [CrossRef]
  19. Optilayer software, http://www.optilayer.com

2011 (3)

2010 (2)

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
[CrossRef] [PubMed]

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

2007 (2)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express15(20), 13108–13113 (2007).
[CrossRef] [PubMed]

2004 (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech.20, 58–61 (2004).

2002 (1)

1999 (2)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

1992 (1)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992).
[CrossRef]

1983 (1)

1977 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Acree, M.

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Brett, M. J.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Brunner, R.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Chattopadhyay, S.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Chen, K.-H.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Chen, L.-C.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Dobrowolski, J. A.

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Ganguly, A.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Gödeker, C.

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Huang, Y.-F.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Jen, Y.-J.

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Joo, W.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
[CrossRef] [PubMed]

Kaiser, N.

Kaless, A.

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech.20, 58–61 (2004).

Kim, H. J.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
[CrossRef] [PubMed]

Kim, J. K.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Leitel, R.

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Ma, P.

Minot, M.

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Morhard, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Munzert, P.

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Poitras, D.

Pongratz, S.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992).
[CrossRef]

Präfke, C.

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Schulz, U.

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Southwell, W. H.

Spatz, J.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Tünnermann, A.

Vakil, H.

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Wendling, I.

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Zöller, A.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (2)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A10(4), 1897–1904 (1992).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A15(3), 1460–1465 (1997).
[CrossRef]

Langmuir (1)

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir26(7), 5110–5114 (2010).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photon. Rev.5, 1–19 (2011).

Mater. Sci. Eng. Rep. (1)

S. Chattopadhyay, Y.-F. Huang, Y.-J. Jen, A. Ganguly, K.-H. Chen, and L.-C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1–3), 1–35 (2010).
[CrossRef]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Surf. Coat. Tech. (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “Nano-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech.20, 58–61 (2004).

Thin Solid Films (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351(1-2), 73–78 (1999).
[CrossRef]

Other (3)

A. Macleod, Thin-Film Optical Filters, 3rd edition (Institute of Physics Publishing, 2001).

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX,” Optical Manufacturing and Testing VII, Proc. SPIE 6671 (2007).

Optilayer software, http://www.optilayer.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics