Abstract

We investigated ultraviolet (UV) laser-induced degradation of nonlinear optical crystal CsLiB6O10 (CLBO) and β-BaB2O4 (BBO) using a high-repetition-rate pulsed laser. In this research, we found that the degradation of CLBO was caused by a UV-induced refractive index change at a peak power density higher than a few tens of MW/cm2. On the other hand, BBO exhibited lower UV transmittance at a higher intensity of 10 MW/cm2 and the UV absorption increased with time due to the formation of an absorption center. Moreover, we confirmed that the degradation resistance of CLBO with fewer light scattering defects was improved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
    [CrossRef]
  2. A. Tamhankar and R. Patel, “Optimization of UV laser scribing process for light emitting diode sapphire wafers,” J. Laser Appl.23(3), 032001 (2011).
    [CrossRef]
  3. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
    [CrossRef]
  4. T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
    [CrossRef]
  5. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt.39(30), 5505–5511 (2000).
    [CrossRef] [PubMed]
  6. C. Chen, “A new-type ultraviolet SHG crystal-β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).
  7. H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).
  8. M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
    [CrossRef]
  9. H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
    [CrossRef]
  10. K. Deki, Y. Kagebayashi, N. Kitatochi, M. Horiguchi, Y. K. Yap, Y. Mori, T. Sasaki, and K. Yoshida, “Fourth harmonic generation of Nd:YAG Laser with CLBO crystal: The properties of the long term operations,” IEICE Tech. Rep. LQE97–74, 41–46 (1997) [in Japanese].
  11. K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
    [CrossRef]
  12. K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4.,” Opt. Lett.23(3), 195–197 (1998).
    [CrossRef] [PubMed]
  13. K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).
  14. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
    [CrossRef]
  15. H. Kouta, “Wavelength dependence of repetitive-pulse laser-induced damage threshold in β-BaB2O4.,” Appl. Opt.38(3), 545–547 (1999).
    [CrossRef] [PubMed]
  16. Q. W. Song, C. P. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt.32(35), 7266–7271 (1993).
    [CrossRef] [PubMed]
  17. G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
    [CrossRef]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
    [CrossRef]
  19. V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
    [CrossRef]
  20. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
    [CrossRef]
  21. U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).
  22. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express2(7), 907–913 (2012).
    [CrossRef]
  23. K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
    [CrossRef]

2013 (2)

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

2012 (1)

2011 (2)

2010 (2)

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

2005 (1)

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

2004 (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
[CrossRef]

2003 (1)

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4.,” Opt. Lett.23(3), 195–197 (1998).
[CrossRef] [PubMed]

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

1997 (2)

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

1995 (1)

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

1993 (1)

1990 (1)

K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
[CrossRef]

1988 (1)

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

1985 (1)

C. Chen, “A new-type ultraviolet SHG crystal-β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

1978 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Argiolas, N.

Basting, D.

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

Bazzan, M.

Bhandari, R.

Bosenberg, W. R.

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

Chen, C.

C. Chen, “A new-type ultraviolet SHG crystal-β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

Cheng, L. K.

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

Ciampolillo, M. V.

Cristiani, I.

Degiorgio, V.

Deki, K.

Denks, V.

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Dergachev, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Deutsch, N.

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

Dudelzak, A.

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Finch, A.

Fukui, T.

Fukushima, Y.

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

Furukawa, Y.

Grando, D.

Imade, M.

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

Imai, S.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Itoh, K.

K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
[CrossRef]

Iwase, O.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Kanoh, A.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Kikuiri, N.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Kimura, K.

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

Kondo, K.

Kouta, H.

Kubota, S.

K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4.,” Opt. Lett.23(3), 195–197 (1998).
[CrossRef] [PubMed]

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Kuroda, I.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Kuwano, Y.

K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
[CrossRef]

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Marumo, F.

K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
[CrossRef]

Masuda, H.

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

Masuda, K.

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

Matsuki, K.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Minzioni, P.

Miyamoto, A.

Mori, Y.

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Moulton, P. F.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Mürk, V.

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Musso, E.

Nakai, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Nakajima, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Nakatani, H.

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

Nava, G.

Nishioka, M.

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Ohsako, Y.

Oka, M.

Osada, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Parravicini, J.

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
[CrossRef]

Patel, R.

A. Tamhankar and R. Patel, “Optimization of UV laser scribing process for light emitting diode sapphire wafers,” J. Laser Appl.23(3), 032001 (2011).
[CrossRef]

Proulx, P. P.

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Raduban, M. C.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Sada, C.

Sakuma, J.

Sarukura, N.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Sasaki, T.

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Schröder, T.

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

Shimizu, T.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Shinozaki, T.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Song, Q. W.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Stamm, U.

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

Tago, T.

Taira, T.

Takachiho, K.

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

Takahashi, M.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Takahashi, Y.

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

Takayama, K.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Talbot, P. J.

Tamhankar, A.

A. Tamhankar and R. Patel, “Optimization of UV laser scribing process for light emitting diode sapphire wafers,” J. Laser Appl.23(3), 032001 (2011).
[CrossRef]

Tang, C. L.

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

Tatsuki, K.

Umezu, N.

K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4.,” Opt. Lett.23(3), 195–197 (1998).
[CrossRef] [PubMed]

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

Urata, Y.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Vassiltsenko, V.

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

Wada, H.

Wada, S.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Wada, Y.

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
[CrossRef]

Yan, W.

Yokota, T.

Yoshimura, M.

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
[CrossRef]

Zaltron, A.

Zhang, C. P.

Zschocke, W.

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

Appl. Opt. (3)

Appl. Phys. Express (1)

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al doping of CsLiB6O10 for high resistance to ultraviolet-induced degradation,” Appl. Phys. Express6(2), 022701 (2013).
[CrossRef]

Appl. Phys. Lett. (2)

H. Nakatani, W. R. Bosenberg, L. K. Cheng, and C. L. Tang, “Laser-induced damage in beta-barium metaborate,” Appl. Phys. Lett.53(26), 2587–2589 (1988).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67(13), 1818–1820 (1995).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics22(1), 949–960 (1978).
[CrossRef]

J. Appl. Phys. (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys.96(4), 2023–2028 (2004).
[CrossRef]

J. Cryst. Growth (2)

K. Itoh, F. Marumo, and Y. Kuwano, “β-barium borate single crystal grown by a direct Czochralski method,” J. Cryst. Growth106(4), 728–731 (1990).
[CrossRef]

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of CsLiB6O10 crystals with high laser-damage tolerance,” J. Cryst. Growth279(1-2), 76–81 (2005).
[CrossRef]

J. Laser Appl. (1)

A. Tamhankar and R. Patel, “Optimization of UV laser scribing process for light emitting diode sapphire wafers,” J. Laser Appl.23(3), 032001 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. C. Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B141(1-4), 472–476 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater.23(1-2), 343–351 (2003).
[CrossRef]

Opt. Mater. Express (2)

OSA Trends in Optics and Photonics Advanced Solid State Lasers (2)

U. Stamm, W. Zschocke, T. Schröder, N. Deutsch, and D. Basting, “High efficiency UV-conversion of a 1 kHz diode-pumped Nd:YAG laser system,” OSA Trends in Optics and Photonics Advanced Solid State Lasers10, 7–9 (1997).

H. Masuda, N. Umezu, K. Kimura, and S. Kubota, “High-repetition-rate, 192–197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti:Sapphire laser with a frequency-quadrupled Nd:YAG laser,” OSA Trends in Optics and Photonics Advanced Solid State Lasers26, 63–69 (1997).

Proc. SPIE (1)

S. Imai, K. Matsuki, N. Kikuiri, K. Takayama, O. Iwase, Y. Urata, T. Shinozaki, Y. Wada, and S. Wada, “Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers,” Proc. SPIE7580, 75800H (2010).
[CrossRef]

Sci. Sin. Ser. B (1)

C. Chen, “A new-type ultraviolet SHG crystal-β-BaB2O4,” Sci. Sin. Ser. B28, 235–243 (1985).

The Review of Laser Engineering (1)

K. Takachiho, M. Yoshimura, K. Masuda, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Impurity and defect control of nonlinear optical crystal CsLiB6O10 for improving ultraviolet laser-induced damage tolerance,” The Review of Laser Engineering41, 830–834 (2013).

Other (1)

K. Deki, Y. Kagebayashi, N. Kitatochi, M. Horiguchi, Y. K. Yap, Y. Mori, T. Sasaki, and K. Yoshida, “Fourth harmonic generation of Nd:YAG Laser with CLBO crystal: The properties of the long term operations,” IEICE Tech. Rep. LQE97–74, 41–46 (1997) [in Japanese].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup for measuring (a) UV transmittance and (b) UV-induced degradation.

Fig. 2
Fig. 2

Left: UV peak power density dependence of 266 nm transmittance for CLBO and BBO. Right: UV beam transmitted through BBO at (a) 55 and (b) 110 MW/cm2. The images were observed on fluorescent paper A.

Fig. 3
Fig. 3

Left: 266 nm transmitted power degradation through CLBO at 30 °C and an aperture. Right: Distortion of a UV beam transmitted through CLBO after irradiation for (a) 0, (b) 1.5, and (c) 5 minutes. The images were observed on fluorescent paper A and B, respectively.

Fig. 4
Fig. 4

Observation of light scattering in (a) low-quality, (b) conventional, and (c) newly developed CLBO.

Fig. 5
Fig. 5

UV peak power density dependence of the lifetimes of conventional CLBO (Sample A) and newly developed CLBO with fewer light scattering defects (Sample B) at 150 °C.

Fig. 6
Fig. 6

Left: 266 nm transmitted power degradation through BBO at 30, 70, 100, and 150 °C and an aperture. Right: Distortion of transmitted UV beam through BBO at 30 °C after irradiation for (a) 0, (b) 20, and (c) 55 minutes. The images were observed on fluorescent paper A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T 0 (I)= ln(1+zI β NLA ) zI β NLA ×100[%],

Metrics