Abstract

We present a practical approach to the numerical optimisation of the guiding properties of buried microstructured waveguides, which can be fabricated in a z-cut lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We demonstrate the possibility to extend the spectral range of low-loss operation of the waveguide into the mid-infrared region beyond 3μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics Appl. Phys. 123(Springer-Verlag, 2012).
    [CrossRef]
  2. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer Series in Phtonics) (Springer, 2003).
    [CrossRef]
  3. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE 4941, 51–57 (2003).
    [CrossRef]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
    [CrossRef] [PubMed]
  5. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89(Springer-Verlag, 2003).
    [CrossRef]
  6. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
    [CrossRef]
  7. C. Langrockand, S. Kumarand, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using chi(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24, 2579–2592 (2006).
    [CrossRef]
  8. S.-D. Yang, H. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Appl. Opt.46, 6759–6769 (2007).
    [CrossRef] [PubMed]
  9. M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33, 2458–2460 (2008).
    [CrossRef] [PubMed]
  10. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
    [CrossRef]
  11. S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012).
    [CrossRef] [PubMed]
  12. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett.38, 1872–1874 (2013).
    [CrossRef] [PubMed]
  13. H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
    [CrossRef] [PubMed]
  14. P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).
  15. B. K. G. Renversez and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
    [CrossRef] [PubMed]
  16. A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
    [CrossRef]
  17. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
    [CrossRef] [PubMed]
  18. M. Aslund, N. Jovanovic, J. Groothoff, N., Canning, G. Marshall, S. Jackson, A. Fuerbach, and M. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre bragg gratings,” Opt. Express16, 14248–14254 (2008).
    [CrossRef] [PubMed]
  19. M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Amer. A10, 246–261 (1993).
    [CrossRef]
  20. I. A. Khromova and L. A. Melnikov, “Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281, 5458–5466 (2008).
    [CrossRef]
  21. Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009).
    [CrossRef]
  22. Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010).
    [CrossRef]
  23. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
    [CrossRef]
  24. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
    [CrossRef]
  25. L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).
  26. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
    [CrossRef]
  27. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express1917820–17833 (2011).
    [CrossRef] [PubMed]

2013 (3)

2012 (1)

2011 (3)

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express1917820–17833 (2011).
[CrossRef] [PubMed]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

2010 (2)

Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010).
[CrossRef]

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

2009 (2)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009).
[CrossRef]

2008 (3)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

2003 (2)

B. K. G. Renversez and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003).
[CrossRef] [PubMed]

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

1993 (1)

M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Amer. A10, 246–261 (1993).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Alberich, M.

Allsop, T.

Ams, M.

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Arriola, A.

Aslund, M.

Beloglazov, V. I.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Bennion, I.

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Boscolo, S.

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
[CrossRef] [PubMed]

Canning,

Cerullo, G.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Dubov, M.

H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
[CrossRef] [PubMed]

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Fejer, M. M.

Février, S.

P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).

Fischer, D.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Fuerbach, A.

Fujimura, M.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer Series in Phtonics) (Springer, 2003).
[CrossRef]

Gérôme, F.

P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).

Glas, P.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Groothoff, J.

Gross, S.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Jackson, S.

Jiang, Z.

Jovanovic, N.

Kar, A. K.

Karakuzu, H.

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
[CrossRef] [PubMed]

Khromova, I. A.

I. A. Khromova and L. A. Melnikov, “Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281, 5458–5466 (2008).
[CrossRef]

Khrushchev, I.

Kumarand, S.

Lancaster, D. G.

Langrockand, C.

Laporta, P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Lu, M.

M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Amer. A10, 246–261 (1993).
[CrossRef]

Marshall, G.

Mazhirina, Y. A.

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010).
[CrossRef]

Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009).
[CrossRef]

McGeehan, J. E.

McPhedran, R.

Melnikov, L. A.

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010).
[CrossRef]

Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009).
[CrossRef]

I. A. Khromova and L. A. Melnikov, “Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281, 5458–5466 (2008).
[CrossRef]

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Mezentsev, V.

Mezentsev, V. K.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Miao, H.

Mitchell, J.

Monro, T. M.

Muriel, M. A.

N.,

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Okhrimchuk, A. G.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
[CrossRef] [PubMed]

Osellame, R.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Parameswaran, K. R.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Preciado, M. A.

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Renversez, B. K. G.

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Rodenas, A.

Ruske, J-P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Salathé, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Schmitz, H.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Shestakov, A. V.

Skibina, N. B.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Skibina, Yu. S.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Streltsov, A. M.

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE 4941, 51–57 (2003).
[CrossRef]

Suhara, T.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer Series in Phtonics) (Springer, 2003).
[CrossRef]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Turchin, A.

A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Viale, P.

P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).

Vilard, H.

P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).

Wedell, R.

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

Weiner, A. M.

Williams, J. A. R.

A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Willner, A. E.

Withford, M.

Withford, M. J.

Yang, S.-D.

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

AIP Conference Proceedings (1)

Y. A. Mazhirina and L. A. Melnikov, “Numerical modelling of waveguiding properties of solid core photonic crystal fibers”, in AIP Conference Proceedings1291, 136–138 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond irradiation induced refractive index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Conference on Lasers & Electro-Optics Europe (CLEO/Europe) (1)

L. A. Melnikov, Yu. S. Skibina, P. Glas, D. Fischer, N. B. Skibina, V. I. Beloglazov, and R. Wedell, “Glass and metal-glass holey fibers with high quality hexagonal structure,” in Conference on Lasers & Electro-Optics Europe (CLEO/Europe), p. 609 (2003).

J. Lightwave Technol. (1)

J. Opt. Soc. Amer. A (1)

M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Amer. A10, 246–261 (1993).
[CrossRef]

Laser Phys. (1)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Opt. & Quantum Electron. (1)

A. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011).
[CrossRef]

Opt. & Spectroscopy (1)

Y. A. Mazhirina and L. A. Melnikov, “On the structure of waveguiding regions for high-order core modes of solid-core photonic-crystal fibers,” Opt. & Spectroscopy107, 454–459 (2009).
[CrossRef]

Opt. Commun. (1)

I. A. Khromova and L. A. Melnikov, “Anisotropic photonic crystals: Generalized plane wave method and dispersion symmetry properties,” Opt. Commun.281, 5458–5466 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS) (1)

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Control of the properties of microstructured waveguides in lithium niobate crystals,” in OSA Topical Meeting on Advanced Solid-State Lasers & Mid-Infrared Coherent Sources (ASSL/MICS), paper JTh2A.22 (2013).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Phys. Status Solid A (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solid A208, 276–283 (2011).
[CrossRef]

Other (5)

P. Viale, S. Février, F. Gérôme, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in COMSOL Multiphysics User’s Conference(2005).

R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics Appl. Phys. 123(Springer-Verlag, 2012).
[CrossRef]

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer Series in Phtonics) (Springer, 2003).
[CrossRef]

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE 4941, 51–57 (2003).
[CrossRef]

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89(Springer-Verlag, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left: cross-section of WG structure with seven rings of tracks with different diameters. Right: ellipsoid of refractive indices of z-cut LiNbO3 crystal.

Fig. 2
Fig. 2

Left: track diameter versus cladding layer number for a seven-ring WG structure with different growth rate parameters p. Right: Cross-sections of seven-ring structures for (from top to bottom and left to right) p = 0 (uniform structure), 0.2, 1, 5. Other parameters are: pitch a = 2.5μm, Dmax = 2.4μm, Dmin = 1μm.

Fig. 3
Fig. 3

Real parts of effective RIs as a function of wavelength for the PWM computed modes of a WG structure with seven rings of tracks.

Fig. 4
Fig. 4

Real parts of effective RIs for O and E waves as a function of wavelength for the fundamental mode of a seven-ring WG structure, as obtained from PWM and FEM simulations.

Fig. 5
Fig. 5

Confinement loss for E wave at λ = 1.55μm versus track diameter for a seven-ring WG structure with a = 2.5μm and different values of δn.

Fig. 6
Fig. 6

Confinement loss for E wave versus growth rate parameter p at λ = 1.55μm (left) and λ = 3μm (right), for a seven-ring WG structure with δn = −0.01. Here, Dmin = 1μm.

Fig. 7
Fig. 7

Confinement losses for O and E waves as a function of wavelength for a seven-ring WG structure with different growth rate parameters p. Other parameters are: δn = −0.01, Dmax =2.2μm, Dmin =1μm.

Fig. 8
Fig. 8

Confinement loss for E wave versus loss induced on tracks by fs inscription for a WG with p = 0 and p = 0.5 at λ = 1.55μm, and with p = 0.01 at λ = 3μm. Other WG parameters are: δn = −0.01, a = 2.5μm, Dmax = 2.4μm, Dmin = 1μm.

Fig. 9
Fig. 9

Confinement losses for O and E waves as a function of wavelength for a seven-ring WG structure with p = 0.01. Other parameters are: maximum RI contrast δn = −0.01, Dmax = 2.4μm, Dmin = 1μm.

Tables (1)

Tables Icon

Table 1 Real parts of effective mode indices for O and E waves calculated using the PWM and the FEM. The RIs of the unmodified material no,e are also displayed.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ n = 5.1 × 10 4 ( E E th ) , D = 0.193 ( E E th ) ,
D n = D min + ( n 1 N clad 1 ) p ( D max D min ) , n [ 1 , N clad ] ,
× ( η ^ × H ) = K 2 H , H = 0 ,
η ^ 1 ε ^ = ( η o 0 0 0 η e 0 0 0 η o ) , η o , e = 1 n o , e 2 .
n o , e ( y , z ) = n o , e + δ n f ( y , z ) , f ( y , z ) = { 1 , ( y , z ) tracks 0 , ( y , z ) otherwise
β 2 H y ( y , z ) = 2 H y y 2 + 2 H y z 2 + K 2 1 η o H y + 1 η o η o z ( H y z H z y ) , β 2 H z ( y , z ) = η o η e 2 H z y 2 + 2 H z z 2 + K 2 1 η e H z + ( 1 η e η o ) 2 H y y z 1 η e η o y ( H y z H z y ) .
H y ( y , z ) = m = n = H m , n y exp [ i G m , n y y + i G m , n z z ] , H z ( y , z ) = m = n = H m , n z exp [ i G m , n y y + i G m , n z z ] , 1 η o ( y , z ) = m = n = U m , n o exp [ i G m , n y y + i G m , n z z ] , 1 η e ( y , z ) = m = n = U m , n e exp [ i G m , n y y + i G m , n z z ] , η o ( y , z ) = m = n = P m , n o exp [ i G m , n y y + i G m , n z z ] , η e ( y , z ) = m = n = P m , n e exp [ i G m , n y y + i G m , n z z ] ,
m = n = ( L m , n y y H m , n y + L m , n y z H m , n z ) = β 2 H m , n y , m = n = ( L m , n z y H m , n y + L m , n z z H m , n z ) = β 2 H m , n z ,
L m , n y y = [ ( G m , n y ) 2 + ( G m , n z ) 2 ] δ m m δ n n + K 2 U m m , n n o + i G m , n z V m m , n n o , L m , n y z = i G m , n y V m m , n n o , L m , n z z = ( G m , n z ) 2 δ m m δ n n ( G m , n y ) 2 W m m , n n , G m , n y G m , n y T m m , n n + K 2 U m m , n n e + i G m , n y V m m , n n e , L m , n z y = i G m , n z V m m , n n e , V m , n o , e = m = n = i G m , n z , y P m , n o U m m , n n o , e , W m , n = m = n = P m , n o U m m , n n e , T m , n = m = n = P m , n o ( P m m , n n o P m m , n n e ) .
E y = η e ( y , z ) β K ( β 2 H z 2 H z z 2 H y y z ) , E z = η o ( y , z ) β K ( β 2 H y 2 H z y z 2 H y y 2 ) , S x = [ E y * H z E z * H y ] .
X m , n = { i π r i 2 S X 1 + ( 1 i π r i 2 S ) X 2 , m = n = 0 2 π i exp [ i G m , n y y i + i G m , n z z i ] r i 2 S J 1 ( r i ( G m , n y ) 2 + ( G m , n z ) 2 ) r i ( G m , n y ) 2 + ( G m , n z ) 2 ( X 1 X 2 ) , m , n 0

Metrics