Abstract

Chalcogenide glasses from (GeSe2)100-x(Sb2Se3)x system were synthesized, with x varying from 5 to 70, in order to evaluate the influence of antimony selenide addition on nonlinear optical properties and photosensitivity. Nonlinear refractive index and two photon absorption coefficients were measured both at 1064 nm in picosecond regime using the Z-scan technique and at 1.55 µm in femtosecond regime using an original method based on direct analysis of beam profile change while propagating in the chalcogenide glasses. The study of their photosensitivity at 1.55 μm revealed highly glass composition dependent behavior and quasi-photostable compositions have been identified in femtosecond regime. To better understand these characteristics, the evolution of the glass transition temperature, density and structure with the chemical composition were determined.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B15(12), 2946–2950 (1998).
    [CrossRef]
  2. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
    [CrossRef]
  3. N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett.28(12), 965–967 (2003).
    [CrossRef] [PubMed]
  4. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
    [CrossRef] [PubMed]
  5. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000).
    [CrossRef] [PubMed]
  6. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
    [CrossRef]
  7. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
    [CrossRef]
  8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
    [CrossRef]
  9. S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
    [CrossRef]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  11. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
    [CrossRef] [PubMed]
  12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
    [CrossRef] [PubMed]
  13. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
    [CrossRef]
  14. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991).
    [CrossRef]
  15. M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
  16. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).
  17. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids68(5-6), 896–900 (2007).
    [CrossRef]
  18. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
    [CrossRef]
  19. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
    [CrossRef]
  20. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
    [CrossRef] [PubMed]
  21. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
    [CrossRef]
  22. G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals10, 255–267 (2003).
    [CrossRef]
  23. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
    [CrossRef]
  24. S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
    [CrossRef]
  25. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
    [CrossRef]
  26. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
    [CrossRef]
  27. R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
    [CrossRef]
  28. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).
  29. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B11(6), 1009–1017 (1994).
    [CrossRef]
  30. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
    [CrossRef]
  31. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
    [CrossRef]
  32. M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
    [CrossRef]
  33. T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
    [CrossRef]
  34. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
    [CrossRef]
  35. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987).
    [CrossRef] [PubMed]
  36. O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
    [CrossRef]
  37. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
    [CrossRef]
  38. L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
    [CrossRef]
  39. J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
    [CrossRef]
  40. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
    [CrossRef]
  41. L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
    [CrossRef]
  42. P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
    [CrossRef]
  43. V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
    [CrossRef]
  44. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
    [CrossRef]
  45. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
    [CrossRef]
  46. P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
    [CrossRef]
  47. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
    [CrossRef]
  48. J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
    [CrossRef]
  49. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998).
    [CrossRef] [PubMed]
  50. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
    [CrossRef]
  51. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. V. Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B9(3), 405–414 (1992).
    [CrossRef]
  52. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express20(11), 12416–12421 (2012).
    [CrossRef] [PubMed]

2012

2011

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
[CrossRef] [PubMed]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

2010

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

2009

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

2008

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

2007

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids68(5-6), 896–900 (2007).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

2006

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

2005

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

2004

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

2003

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals10, 255–267 (2003).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett.28(12), 965–967 (2003).
[CrossRef] [PubMed]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

2002

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

2001

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

2000

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000).
[CrossRef] [PubMed]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
[CrossRef]

1999

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

1998

1995

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

1994

1992

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991).
[CrossRef]

1990

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
[CrossRef]

1987

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987).
[CrossRef] [PubMed]

1983

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

1982

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
[CrossRef]

1972

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
[CrossRef]

1967

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Adam, J. L.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Adam, J.-L.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

Adarsh, K. V.

Agarwal, A.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

Aggarwal, I. D.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Baker, N. J.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Barik, A. R.

Barthelemy, A.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Beatty, R.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Boudebs, G.

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

Boycheva, S. V.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

Brandily-Anne, M.-L.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

Briley, A.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

Campbell, B.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Cardinal, T.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Cardona, M.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
[CrossRef]

Carlie, N.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Cathelinaud, M.

Cernoskova, E.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

Charpentier, F.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Charrier, J.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Chen, H.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

Cheong, S. W.

Cherukulappurath, S.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

Choi, D. Y.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Couderc, V.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Debbarma, S. K.

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Espinosa, G. P.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

Fedus, K.

Ferreira, B.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Frumar, M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
[CrossRef]

Frumarová, B.

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
[CrossRef]

Fuflyigin, V. N.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Fukunaga, T.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
[CrossRef]

Gaylord, S.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

Golovchak, R.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

Gopinath, J. T.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Griffiths, J. E.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

Grillet, C.

Grossman, S.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

Guignard, M.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

Guin, J. P.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Guin, J.-P.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

Guo, Y.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Hagan, D. J.

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Hô, N.

Hu, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

Humeau, A.

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991).
[CrossRef]

Hwang, H. Y.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

Inoue, K.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
[CrossRef]

Iovu, M.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

Ippen, E. P.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Ivanova, Z. G.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

Jackson, K.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

Jain, H.

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express20(11), 12416–12421 (2012).
[CrossRef] [PubMed]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

Jurdyc, A. M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Kamiya, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

Katsufuji, T.

Keezer, R. C.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Khan, P.

Kimerling, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

King, W. A.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Kobayashi, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Kovalskiy, A.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

Krauss, T. F.

Kubodera, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

Lamont, M. R. E.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Laniel, J. M.

Le Foulgoc, K.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Leblond, H.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Lenz, G.

Lhermite, H.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Lines, M. E.

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

Lucas, J.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Lucovsky, G.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Luther-Davies, B.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Madden, S.

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

Madden, S. J.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Marchand, C.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

Martin, S.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Massera, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

Matsuda, O.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
[CrossRef]

Meneghini, C.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B15(12), 2946–2950 (1998).
[CrossRef]

Milam, D.

Miller, A. C.

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

Monat, C.

Monteil, A.

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

Mooradian, A.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Moreac, A.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Moréac, A.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

Murase, K.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
[CrossRef]

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
[CrossRef]

Nakamura, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

Nasu, H.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

Nazabal, V.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Nemec, P.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

O’Faolain, L.

Pant, R.

Pavlista, M.

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Pederson, M. R.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

Pelusi, M. D.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Petit, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Phillips, J. C.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

Porezag, D. V.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

Prikryl, J.

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

Quemard, C.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Remeika, J. P.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

Richardson, K. A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Richardson, K. C.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

Said, A. A.

Sanchez, F.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

Sanghera, J. S.

Sangunni, K. S.

Schröder, J.

Schulte, A.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

Sheik-Bahae, M.

Shim, H.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Shpotyuk, O.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Slusher, R. E.

Smektala, F.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Soljacic, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

Spalter, S.

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals10, 255–267 (2003).
[CrossRef]

Spälter, S.

Spurny, M.

Stryland, E. W. V.

Sugai, S.

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987).
[CrossRef] [PubMed]

Taeed, V. G.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Tanaka, K.

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids68(5-6), 896–900 (2007).
[CrossRef]

Tanaka, Y.

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
[CrossRef]

Tauc, J.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
[CrossRef]

Taylor, W.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Troles, J.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

Vallée, R.

Van Stryland, E. W.

Vanstryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991).
[CrossRef]

Vassilev, V. S.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

Viens, J. F.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

Villeneuve, A.

Villeneuve, R.

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

Vinod, E. M.

Vo, T. D.

Wang, J.

Wei, T. H.

Wihl, M.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
[CrossRef]

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002).
[CrossRef] [PubMed]

Wright, G. B.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Yakushiji, K.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

Yoshimi, T.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

Young, J.

Yunoki, I.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Zhang, S.

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express18(22), 22944–22957 (2010).
[CrossRef] [PubMed]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Zhang, X.-H.

Zimmermann, J.

Adv. Phys.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett.14(6), 822–824 (2002).
[CrossRef]

Int. J. Appl. Ceram. Technol.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol.8(5), 990–1000 (2011).
[CrossRef]

J. Am. Ceram. Soc.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc.73(6), 1794–1796 (1990).
[CrossRef]

J. Appl. Phys.

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004).
[CrossRef]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

J. Non-Cryst. Solids

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids352(50-51), 5413–5420 (2006).
[CrossRef]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids270(1-3), 137–146 (2000).
[CrossRef]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids357(19-20), 3454–3460 (2011).
[CrossRef]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids257, 353–360 (1999).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids8–10, 172–178 (1972).
[CrossRef]

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids59–60(Part 2), 883–886 (1983).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids354(2-9), 462–467 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids66(10), 1788–1794 (2005).
[CrossRef]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids62(8), 1435–1440 (2001).
[CrossRef]

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids68(5-6), 896–900 (2007).
[CrossRef]

J. Solid State Chem.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem.182(10), 2756–2761 (2009).
[CrossRef]

Mater. Chem. Phys.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys.97(1), 64–70 (2006).
[CrossRef]

Mater. Lett.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett.57(5-6), 1025–1028 (2003).
[CrossRef]

Mater. Res. Bull.

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull.42(12), 2107–2116 (2007).
[CrossRef]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Nonlinear Photonic Crystals

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals10, 255–267 (2003).
[CrossRef]

Opt. Commun.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun.242(1-3), 313–319 (2004).
[CrossRef]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun.219(1-6), 427–433 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater.22(4), 335–343 (2003).
[CrossRef]

Opt. Photonics News

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News19(2), 18–23 (2008).
[CrossRef]

Phys. Rev. B

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B35(3), 1345–1361 (1987).
[CrossRef] [PubMed]

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B60(22), 14985–14989 (1999).
[CrossRef]

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B28(8), 4444–4453 (1983).
[CrossRef]

Solid State Commun.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun.75(4), 303–308 (1990).
[CrossRef]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun.42(7), 513–516 (1982).
[CrossRef]

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun.5(2), 113–117 (1967).
[CrossRef]

Thin Solid Films

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Other

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).

M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.

S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Ternary diagram of Ge-Sb-Se system showing glass forming regions for different cooling rates (solid curve: water quenching, dashed curve: quenching on air, dotted curve: slow cooling), adopted from Popescu [28]. Synthesized (GeSe2)100-x(Sb2Se3)x samples are depicted by numbers, i.e. Nr. 1-8 stand for samples where x = 5, 10, 20, 30, 40, 50, 60, and 70. Samples Nr. 1-7 form glasses; sample Nr. 8 is of crystalline nature.

Fig. 2
Fig. 2

Compositional dependences of glass transition temperature (Tg) and density of (GeSe2)100-x(Sb2Se3)x glasses (x = 5-60).

Fig. 3
Fig. 3

Raman scattering spectra of bulk (GeSe2)100-x(Sb2Se3)x glasses (x = 0-60). Dotted lines correspond to contributions coming from Ge-Se structural entities, solid lines correspond to contributions due to introduction of antimony.

Fig. 4
Fig. 4

Raman scattering spectra of (GeSe2)90(Sb2Se3)10 (a), (GeSe2)70(Sb2Se3)30 (b), and (GeSe2)50(Sb2Se3)50 (c) glasses, and their respective decomposition in Gaussian curves (colored dashed lines). Full red curves correspond to the sum of Gaussian contributions.

Fig. 5
Fig. 5

Intensity ratios for various Raman active vibration modes. ISe-Se corresponds to the sum of ~230 and ~260 cm−1 contributions from homopolar Se-Se bonds. IES and ICS are intensities of A1c and A1 bands, respectively (ES is for edge-shared and CS for corner-shared tetrahedra). ISb-Sb and ISb-Se correspond to ~155 cm−1 and ~190 cm−1 contributions, respectively.

Fig. 6
Fig. 6

Measured evolution of beam FWHM at the output of a 2.21 mm long (GeSe2)60(Sb2Se3)40 sample when input light beam intensity is switched from linear regime to nonlinear regime (I0 = 1.4 GW/cm2) at t = 10 s. Inserts show two corresponding observed images.

Fig. 7
Fig. 7

Calculated output beam FWHM as a function of the nonlinear refractive index n2 for two different input light intensities I0. Parameters: (GeSe2)95(Sb2Se3)5 glass, input FWHM = 25.7 µm, sample length = 2.26 mm, linear refractive index = 2.42, λ = 1550 nm, α = 0.15 cm−1, β = 0.44 cm/GW.

Fig. 8
Fig. 8

Evolution of output beam size with time for (GeSe2)100-x(Sb2Se3)x glasses for intensities I0 of about 1.8 GW/cm2 (x = 5), 1.5 GW/cm2 (x = 10 and x = 20), 1.3 GW/cm2 (x = 30), and 1.1 GW/cm2 (x = 40).

Fig. 9
Fig. 9

Evolution of normalized transmission of (GeSe2)80(Sb2Se3)20, (GeSe2)70(Sb2Se3)30, and (GeSe2)50(Sb2Se3)50 glasses. Intensities I0 are 1.5 GW/cm2 (x = 20), 1.3 GW/cm2 (x = 30), and 0.9 GW/cm2 (x = 50).

Tables (3)

Tables Icon

Table 1 Theoretical and real chemical composition (evaluated by EDS) of fabricated (GeSe2)100-x(Sb2Se3)x glasses ( ± 0.5 at.%), their cut-off wavelengths determined as wavelengths at which absorption coefficient is equal to 10 and 1000 cm−1, and optical bandgap (Eg, ± 0.01 eV) values extracted by Cody-Lorentz model from VASE data and as energy where α = 1000 cm−1 (Eg03).

Tables Icon

Table 2 Contributions of different structural entities to Raman scattering spectra in Ge-Sb-Se glasses according to past studies.

Tables Icon

Table 3 Linear (n0) and nonlinear (n2) refractive indices, n2/n2(SiO2) ratios, two photon absorption coefficients (β), nonlinear figures of merit (FOM) of (GeSe2)100-x(Sb2Se3)x glasses determined at 1.064 and 1.550 µm. For a comparison, data for Ge28Sb12Se60, As2Se3, and As2S3 glasses taken from other authors are given. Note that literature data could differ from this work in measurement method and measurement wavelength (MZI is for Mach-Zehnder interferometry, SRTBC is for spectrally resolved two-beam coupling).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= exp( αL ) 1+β I 0 ( 1exp(βL) α ) .

Metrics