Abstract

We report on novel light–emitting properties from monodispersed mesoporous silica particles embedded with β–Ga2O3 nanocrystals that were fabricated through a chemical approach followed by thermal annealing in specific atmosphere. The emission spectrum of such nanocomposites consists of several sharp peaks where the dominant one regularly shifts with variation of the excitation wavelength, leading to observation of multiple–color light emissions ranging from blue, green, to white light wavelength regions. We suggest that the donor levels created by oxygen vacancy while multiple acceptor levels induced by gallium vacancy or gallium oxide vacancy account for the emission features of multiple bands.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
    [CrossRef] [PubMed]
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
    [CrossRef]
  3. S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
    [CrossRef]
  4. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
    [CrossRef] [PubMed]
  5. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
    [CrossRef] [PubMed]
  6. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
    [CrossRef]
  7. C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004).
    [CrossRef] [PubMed]
  8. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
    [CrossRef] [PubMed]
  9. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
    [CrossRef] [PubMed]
  10. X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
    [CrossRef]
  11. X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
    [CrossRef]
  12. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
    [CrossRef]
  13. A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
    [CrossRef]
  14. S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
    [CrossRef]
  15. K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004).
    [CrossRef]
  16. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
    [CrossRef]
  17. T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007).
    [CrossRef]
  18. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
    [CrossRef]
  19. S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009).
    [CrossRef]
  20. T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
    [CrossRef] [PubMed]
  21. I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
    [CrossRef]
  22. T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
    [CrossRef]
  23. H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
    [CrossRef]
  24. J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
    [CrossRef] [PubMed]
  25. M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
    [CrossRef] [PubMed]
  26. K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004).
    [CrossRef]
  27. H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
    [CrossRef]
  28. M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
    [CrossRef]

2013

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

2012

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

2010

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

2009

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009).
[CrossRef]

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

2008

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

2007

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007).
[CrossRef]

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

2005

M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
[CrossRef]

2004

C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004).
[CrossRef] [PubMed]

K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004).
[CrossRef]

A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
[CrossRef]

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004).
[CrossRef]

2001

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

1998

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

1996

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

1994

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Abulikemu, M.

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Alkis, S.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Amassian, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Blyth, R. I. R.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Carey, G. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Chang, K. W.

K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004).
[CrossRef]

Chen, H.

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Chen, T.

T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007).
[CrossRef]

Chen, W.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Choi, S. H.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Choo, E. S. G.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

Chou, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Debnath, R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Ding, J.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

Farvid, S. S.

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

Fischer, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Fukushima, K.

K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004).
[CrossRef]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Giri, S.

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

He, Y.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Heigl, F.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Higashiwaki, M.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

Hoogland, S.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Hyeon, T.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Ip, A. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Jiang, J. Z.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Jochum, W.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Kemp, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Kikegawa, T.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Kim, H.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Kim, J.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Kim, J. H.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Kim, T.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Klötzer, B.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Ko, J. Y. P.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Kosger, A. C.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Kramer, I. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Kuramata, A.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

Labelle, A. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Lee, J. E.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Lee, N.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Levina, L.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Li, C.

C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004).
[CrossRef] [PubMed]

Li, G. H.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Li, L.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

Li, Y. X.

A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
[CrossRef]

Liang, C. H.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Lin, C.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Lin, V. S. Y.

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

Lorenz, H.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Masui, T.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Meng, G. W.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Ming, T.

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Moon, W. K.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Murase, N.

C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004).
[CrossRef] [PubMed]

Murphy, M. W.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Music, S.

M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
[CrossRef]

Nakamura, T.

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Nanda, K. K.

S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009).
[CrossRef]

Ning, C. Z.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

Ning, Z.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Okyay, A. K.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Ortac, B.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Oruc, F. B.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Pan, A.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

Park, S. P.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Penner, S.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Popovic, S.

M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
[CrossRef]

Radovanovic, P. V.

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

Rameshan, C.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Regier, T.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Ren, Q. G.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Ristic, M.

M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
[CrossRef]

Rollny, L. R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Sargent, E. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Sham, T. K.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Shao, L.

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Slowing, I. I.

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

Song, I. C.

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

Song, Y. P.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Stahl, K.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Stoger-Pollach, M.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Tang, K.

T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007).
[CrossRef]

Tang, X.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

Thon, S. M.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Trewyn, B. G.

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

Trinchi, A.

A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
[CrossRef]

Vanithakumari, S. C.

S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009).
[CrossRef]

Voznyy, O.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Wang, D.

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Wang, G. Z.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Wang, H.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Wang, J.

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Wang, T.

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

Wang, Y. W.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Wlodarski, W.

A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
[CrossRef]

Wu, J. J.

K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004).
[CrossRef]

Xia, Y. Y.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Xiong, H. M.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xu, Y.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xue, J.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

Yamada, H.

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

Yamada, Y.

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

Yamakoshi, S.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

Yang, F. H.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Yano, K.

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004).
[CrossRef]

Yu, D. P.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Zeng, Y. W.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

Zhang, H. Z.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Zhang, L. D.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Zhang, S. Y.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

Zhitomirsky, D.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Zhou, J. G.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Zhou, X. T.

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Zhu, Y. W.

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Zhuang, X.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

ACS Nano

M. Xiao, H. Chen, T. Ming, L. Shao, and J. Wang, “Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres,” ACS Nano4(11), 6565–6572 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, “Mesoporous silica nanoparticles for drug delivery and biosensing applications,” Adv. Funct. Mater.17(8), 1225–1236 (2007).
[CrossRef]

Adv. Mater.

H. Yamada, T. Nakamura, Y. Yamada, and K. Yano, “Colloidal–crystal laser using monodispersed mesoporous silica spheres,” Adv. Mater.21(41), 4134–4138 (2009).
[CrossRef]

S. C. Vanithakumari and K. K. Nanda, “A one–step method for the growth of Ga2O3–nanorod–based white–light–emitting phosphors,” Adv. Mater.21(35), 3581–3584 (2009).
[CrossRef]

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

K. W. Chang and J. J. Wu, “Low–temperature growth of well–aligned β–Ga2O3 nanowires from a single–source organometallic precursor,” Adv. Mater.16(6), 545–549 (2004).
[CrossRef]

Appl. Catal. A

S. Penner, H. Lorenz, W. Jochum, M. Stoger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, “Pd/Ga2O3 methanol steam reforming catalysts: Part I. Morphology, composition and structural aspects,” Appl. Catal. A358(2), 193–202 (2009).
[CrossRef]

Appl. Phys. Lett.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β–Ga2O3 nanowires,” Appl. Phys. Lett.78(21), 3202 (2001).
[CrossRef]

T. Chen and K. Tang, “γ–Ga2O3 quantum dots with visible blue–green light emission property,” Appl. Phys. Lett.90(5), 053104 (2007).
[CrossRef]

Chem. Mater.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications,” Chem. Mater.22(11), 3383–3388 (2010).
[CrossRef]

IEEE Electron Device Lett.

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky Barrier Diodes Fabricated by Using Single–Crystal β–Ga2O3 (010) substrate,” IEEE Electron Device Lett.34, 493 (2013).
[CrossRef]

J. Am. Chem. Soc.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

T. Wang, S. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc.132(27), 9250–9252 (2010).
[CrossRef] [PubMed]

J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, and T. Hyeon, “uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery,” J. Am. Chem. Soc.132(2), 552–557 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Wang, Y. He, W. Chen, Y. W. Zeng, K. Stahl, T. Kikegawa, and J. Z. Jiang, “High-pressure behavior of β–Ga2O3 nanocrystals,” J. Appl. Phys.107(3), 033520 (2010).
[CrossRef]

J. Mater. Chem.

K. Yano and K. Fukushima, “Synthesis of mono–dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant,” J. Mater. Chem.14(10), 1579 (2004).
[CrossRef]

T. Nakamura, Y. Yamada, H. Yamada, and K. Yano, “A novel route to luminescent opals for controlling spontaneous emission,” J. Mater. Chem.19(37), 6699 (2009).
[CrossRef]

J. Opt.

S. Alkis, F. B. Oruc, B. Ortac, A. C. Kosger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt.14(12), 125001 (2012).
[CrossRef]

Langmuir

C. Li and N. Murase, “Synthesis of highly luminescent glasses incorporating CdTe nanocrystals through sol-gel processing,” Langmuir20(1), 1–4 (2004).
[CrossRef] [PubMed]

Mater. Lett.

M. Ristić, S. Popović, and S. Musić, “Application of sol-gel method in the synthesis of gallium (Ш) –oxide,” Mater. Lett.59(10), 1227–1233 (2005).
[CrossRef]

Nat. Nanotechnol.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol.7(9), 577–582 (2012).
[CrossRef] [PubMed]

Nature

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light–emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Phys. Rev. B

X. T. Zhou, F. Heigl, J. Y. P. Ko, M. W. Murphy, J. G. Zhou, T. Regier, R. I. R. Blyth, and T. K. Sham, “Origin of luminescence from Ga2O3 nanostructures studied using x–ray absorption and luminescence spectroscopy,” Phys. Rev. B75(12), 125303 (2007).
[CrossRef]

Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu, “Luminescence emission originating from nitrogen doping of β–Ga2O3 nanowires,” Phys. Rev. B69(7), 075304 (2004).
[CrossRef]

Science

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996).
[CrossRef]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC,” Sens. Actuators B Chem.100(1-2), 94–98 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM images of MSPs (a) and MSGNs (b). (c) TEM image of MSGNs, the inset is a high–magnification image. (d) XRD pattern of MSPs (black) and MSGNs (red).

Fig. 2
Fig. 2

(a) Normalized excitation (black) and emission (red) spectra of MSGNs obtained by annealing in ambient atmosphere. The excitation and emission maxima are located at 250 and 450 nm, respectively. (b) Evolution of the emission spectrum with the molar ratio of Ga to Si for MSGNs obtained by annealing in ambient atmosphere. (c) The emission spectrum (purple) of MSGNs obtained by annealing in reducing atmosphere when excited at λex = 310 nm as well as the excitation spectra when the emission is monitored at λem = 438 (red), 470 (green), 490 (blue), and 525 nm (cyan). The emission spectrum is de–convoluted into Gaussian contributions (gray curves). The black curve is the summary of the Gaussian contributions. (d) Evolution of the emission profile when the excitation wavelength ranges from 250 to 400 nm for MSGNs obtained by annealing in reducing atmosphere.

Fig. 3
Fig. 3

Schematic of multi‒color light emissions in MSGNs. The donor levels are supposed to be created by oxygen vacancies while multiple acceptor levels are induced by gallium vacancies or gallium oxide vacancies, accounting for the observation of multiple peaks in the fluorescence spectrum.

Fig. 4
Fig. 4

CIE coordinates of MSGNs. The coordinates are calculated from the emission spectra shown in Fig. 2(c). The insert shows the images of particles excited at different wavelengths. The excitation wavelength corresponds to the CIE coordinates are shown in the right.

Metrics