Abstract

Fiber Bragg gratings fabricated in pristine SMF-28e fibers using pulsed ArF-excimer and cw 244-nm Ar+ laser were annealed using tempering rates from 0.0038 to 0.25 K/s. Demarcation energy mapping allowed for the determination of the frequency factors and the master curves for the SMF-28e fiber under different irradiation conditions. A Gaussian decomposition of the underlying energy distribution revealed several individual activation energy distributions characteristic for the fiber with peak energies and widths that were independent of the laser used. From a fit of the integrated Gaussian distributions to the master curves the relative contributions of the individual energy distributions that appeared in both irradiation conditions were calculated. The difference in the activation energy spectra obtained from the two laser irradiations is explained by the relative contributions of the individual distributions that differ. Using the analytical description of the master curve, thermal stability maps were obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vand, “A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum,” Proc. Phys. Soc. A55(3), 222–246 (1943).
    [CrossRef]
  2. W. Primak, “Kinetics of processes distributed in activation energy,” Phys. Rev.100(6), 1677–1689 (1955).
    [CrossRef]
  3. W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
    [CrossRef]
  4. W. Primak, The compacted states of vitreous silica, Studies in radiation effects in solids (Gordon & Breach, New York, 1975), Vol. 4.
  5. W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
    [CrossRef]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
    [CrossRef]
  7. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
    [CrossRef]
  8. Y. H. Shen, J. L. He, Y. Q. Qiu, W. Z. Zhao, S. Y. Chen, T. Sun, and K. T. V. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability,” J. Opt. Soc. Am. B24(3), 430–438 (2007).
    [CrossRef]
  9. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.
  10. C. Ban, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011).
    [CrossRef] [PubMed]
  11. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
    [CrossRef]
  12. G. Violakis, P. Saffari, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Thermal decay of UV Ar+ and ArF excimer laser fabricated Bragg gratings in SMF-28e and Bi-Al-doped optical fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), paper BM4D.6.
  13. M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).
  14. D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990).
    [CrossRef] [PubMed]
  15. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
    [CrossRef]
  16. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
    [CrossRef]
  17. M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett.27(22), 1974–1976 (2002).
    [CrossRef] [PubMed]
  18. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B19(8), 1759–1765 (2002).
    [CrossRef]
  19. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).
  20. F. Dürr, H. G. Limberger, R. P. Salathé, S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing-induced stress changes in UV-irradiated germanium-doped fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (BGPP), 2005), paper 396–398.
  21. Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
    [CrossRef]
  22. G. Violakis, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Fabrication and thermal decay of fiber Bragg gratings in pristine and H2-loaded Bi-Al co-doped optical fibers,” Opt. Express19(26), B350–B355 (2011).
    [CrossRef] [PubMed]
  23. P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
    [CrossRef]
  24. M. J. Lu Valle, B. G. Lefevre, and S. Kannan, Design and Analysis of Accelerated Tests for Mission Critical Reliability (Chapman & Hall/CRC, 2004).
  25. L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
    [CrossRef]
  26. T. E. Tsai, G. M. Williams, and E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett.22(4), 224–226 (1997).
    [CrossRef] [PubMed]
  27. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt.39(12), 1924–1933 (2000).
    [CrossRef] [PubMed]
  28. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
    [CrossRef]
  29. S. Pal, J. Mandal, T. Sun, and K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt.42(12), 2188–2197 (2003).
    [CrossRef] [PubMed]
  30. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Bragg gratings written in Sn-Er-Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential,” J. Opt. Soc. Am. A21(8), 1503–1511 (2004).
    [CrossRef] [PubMed]

2013

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

2011

2010

P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

2009

L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
[CrossRef]

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

2007

2004

2003

2002

2000

D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, and I. Riant, “Comparison of isochronal and isothermal decays of bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt.39(12), 1924–1933 (2000).
[CrossRef] [PubMed]

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

1998

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

1997

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

T. E. Tsai, G. M. Williams, and E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett.22(4), 224–226 (1997).
[CrossRef] [PubMed]

1996

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

1994

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

1990

D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990).
[CrossRef] [PubMed]

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

1961

W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
[CrossRef]

1960

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

1955

W. Primak, “Kinetics of processes distributed in activation energy,” Phys. Rev.100(6), 1677–1689 (1955).
[CrossRef]

1943

V. Vand, “A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum,” Proc. Phys. Soc. A55(3), 222–246 (1943).
[CrossRef]

Agnello, S.

L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
[CrossRef]

Aslund, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

Ban, C.

Bandyopadhyay, S.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Baxter, G. W.

Biswas, P.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Boscaino, R.

L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
[CrossRef]

Boukenter, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Brichard, B.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Canning, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Chen, S. Y.

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

Collins, S. F.

Copeland, L. R.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

Dianov, E. M.

Douay, M.

Dussardier, B.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

Fenton, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Fokine, M.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

Friebele, E. J.

Girard, S.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Gnusin, P. I.

P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

Grattan, K. T. V.

Gusarov, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Hand, D. P.

He, J. L.

Judkins, J. B.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

Kannan, S.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

Keiffer, D.

W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
[CrossRef]

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Kuhnhenn, J.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Ledoux, P.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

Lemaire, P. J.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

Limberger, H. G.

C. Ban, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation,” Opt. Express19(27), 26859–26865 (2011).
[CrossRef] [PubMed]

G. Violakis, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Fabrication and thermal decay of fiber Bragg gratings in pristine and H2-loaded Bi-Al co-doped optical fibers,” Opt. Express19(26), B350–B355 (2011).
[CrossRef] [PubMed]

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

Lu Valle, M. J.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

Mandal, J.

Marcandella, C.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Mashinsky, V. M.

Medvedkov, O. I.

P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

Mohanna, Y.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

Monnom, G.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

Niay, P.

Nuccio, L.

L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
[CrossRef]

Ouerdane, Y.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Pal, S.

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Poumellec, B.

Primak, W.

W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
[CrossRef]

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

W. Primak, “Kinetics of processes distributed in activation energy,” Phys. Rev.100(6), 1677–1689 (1955).
[CrossRef]

Qiu, Y. Q.

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

Razafimahatratra, D.

Riant, I.

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

Rousseau, J. C.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

Russell, P. S. J.

Salathé, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

Saugrain, J. M.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

Shen, Y. H.

Stevenson, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

Sun, T.

Szymanski, H.

W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
[CrossRef]

Tsai, T. E.

Van Uffelen, M.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

Vand, V.

V. Vand, “A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum,” Proc. Phys. Soc. A55(3), 222–246 (1943).
[CrossRef]

Vasilev, S. A.

P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

Violakis, G.

Wade, S. A.

Williams, G. M.

Zhao, W. Z.

Appl. Opt.

Appl. Phys. Lett.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett.68(22), 3069–3071 (1996).
[CrossRef]

Bell Labs Tech. J.

M. J. Lu Valle, L. R. Copeland, S. Kannan, J. B. Judkins, and P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Labs Tech. J.3(July-September), 139–147 (1998).

Electron. Lett.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett.46(5), 363–365 (2010).
[CrossRef]

IEEE Trans. Nucl. Sci.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013).
[CrossRef]

J. Appl. Phys.

W. Primak, H. Szymanski, and D. Keiffer, “Frequency factors for annealing fast-neutron induced density changes in vitreous silica,” J. Appl. Phys.32(4), 660–668 (1961).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys.76(1), 73–80 (1994).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000).
[CrossRef]

W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Europ. Opt. Soc. Rap. Public.4(09052), 1–7 (2009).

J. Lightwave Technol.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledoux, “Relaxation of internal stresses in optical fibers,” J. Lightwave Technol.8(12), 1799–1802 (1990).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol.15(8), 1470–1477 (1997).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev.

W. Primak, “Kinetics of processes distributed in activation energy,” Phys. Rev.100(6), 1677–1689 (1955).
[CrossRef]

Phys. Rev. B

L. Nuccio, S. Agnello, and R. Boscaino, “Role of H2O in the thermal annealing of the Eγ′ center in amorphous silicon dioxide,” Phys. Rev. B79(12), 125205 (2009).
[CrossRef]

Proc. Phys. Soc. A

V. Vand, “A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum,” Proc. Phys. Soc. A55(3), 222–246 (1943).
[CrossRef]

Quantum Electron.

P. I. Gnusin, S. A. Vasilev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010).
[CrossRef]

Other

M. J. Lu Valle, B. G. Lefevre, and S. Kannan, Design and Analysis of Accelerated Tests for Mission Critical Reliability (Chapman & Hall/CRC, 2004).

F. Dürr, H. G. Limberger, R. P. Salathé, S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing-induced stress changes in UV-irradiated germanium-doped fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (BGPP), 2005), paper 396–398.

S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting (OSA, 2003), paper MD31.

W. Primak, The compacted states of vitreous silica, Studies in radiation effects in solids (Gordon & Breach, New York, 1975), Vol. 4.

G. Violakis, P. Saffari, H. G. Limberger, V. M. Mashinsky, and E. M. Dianov, “Thermal decay of UV Ar+ and ArF excimer laser fabricated Bragg gratings in SMF-28e and Bi-Al-doped optical fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP) (OSA, 2012), paper BM4D.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Set-up for thermal annealing (tempering) experiments (ramp rates 0.25 K/s, 0.025 K/s, 0.004 K/s).

Fig. 2
Fig. 2

Average (dc) and amplitude (ac) refractive index changes of the SMF-28e fiber as a function of exposure time for the cw Ar+ (a) and pulsed ArF laser irradiations (b).

Fig. 3
Fig. 3

Thermal annealing of cw-244-nm Ar+ (a) and ArF (b)-fabricated FBG in SMF-28e: Normalized integrated coupling constant versus temperature.

Fig. 4
Fig. 4

Gaussian decomposition of the total activation energy spectra of (a) cw and (b) ArF fabricated gratings in SMF-28e. Gaussian distributions D1-D4, sum of distributions Di, and energy distribution obtained by differentiation of the master curve.

Fig. 5
Fig. 5

Thermal annealing of cw-244-nm Ar+ (a) and ArF (b)-fabricated FBG in SMF-28e. Experimentally obtained master curves and cumulative distribution functions.

Fig. 6
Fig. 6

Stability maps (ICCn(T,t)) for the SMF-28e fiber using the average frequency factor and Gaussian functions. Differences between the two irradiation conditions are contained in weighted contribution of different RI changing processes.

Tables (3)

Tables Icon

Table 1 SMF-28e refractive index changes and reflectivity

Tables Icon

Table 2 Individual Gaussian band parameters

Tables Icon

Table 3 Activation energy distribution parameters of SMF-28e

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

IC C n = ICC( T,t ) ICC( T 0 ) = arctanh( R( T,t ) ) arctanh( R( T 0 ,0 ) )
P( T,t )= Δn( T,t ) Δ n 0 IC C n
P( T,t )= 0 g( E )θ( E,T,t ) dE
θ( E,T,t )=exp[ ν 0 texp( E k B T ) ]{ 0 E< E d 1 E> E d
E d = k B Tln( ν 0 t )
P( E d )= E d g( E ) dE,
g( E d )= P( E d ) / E d
c i = Δ n 0,i Δ n 0
g( E d )= i=1 m c i g i ( E d )
g i ( E d )= 1 σ i 2π exp( 1 2 ( E d E c,i σ i ) 2 )
i=1 m c i g i ( E d ) d E d = i=1 m c i g i ( E d ) d E d =1
P( E d )= c i E d i=1 m g i ( E d ) d E d =1 i=1 m D i ( E d )
D i ( E d )= c i 2 ( 1+erf( E d E c,i σ i 2 ) )
t 2 = 1 ν 0 exp[ T 1 T 2 ln( ν 0 t 1 ) ]

Metrics