Abstract

Optical waveguides are becoming increasingly important in the developing area of broadband communications. The field of electronics is advancing rapidly, leading to further demands for larger data storage, smaller components and a better design of integrated optical circuits. The integration of optical interconnects on printed circuit boards (PCBs) requires precise technologies to make this emerging field possible. A promising new microfabrication technique, two-photon photopolymerisation (2PP) can be used to produce three dimensional structures in the sub-micron region. Near-infrared lasers can be used to create 3D optical waveguides by initiating the photopolymerisation of high refractive index monomers in polymeric matrix materials. Terminal silanol groups are intermediates for room temperature vulcaniseable (RTV) silicones and can be cross linked with functional silanes to produce flexible, transparent polymeric materials with high thermal stabilities. A silanol terminated polysiloxane; cross linked with a methyl substituted acryloxy silane has been developed as a suitable material for the fabrication of optical waveguides by two-photon absorption (TPA). A higher refractive index is achieved upon polymerisation of the acrylate functional groups. The material has been shown to be suitable in the fabrication of 3D optical waveguides with a high refractive index contrast. The cured material is fully flexible and exhibits high thermal stability and optical transparency. The material was characterised by Fourier transform infrared spectroscopy (FT-IR), simultaneous thermal analysis coupled with mass spectrometry (STA-MS) and near-infrared spectroscopy (NIRS). Waveguides were observed by phase contrast microscopy, cut back measurements and were additionally directly integrated onto specially designed PCBs by correctly positioning waveguide bundles between optoelectronic components using TPA.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
    [CrossRef]
  2. C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
    [CrossRef]
  3. D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics11(3), 155–168 (1997).
  4. R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
    [CrossRef]
  5. B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
    [CrossRef]
  6. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt.27(9), 1742–1751 (1988).
    [CrossRef] [PubMed]
  7. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
    [CrossRef]
  8. R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).
  9. G.L Bona, B.J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann and F. Horst “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. of SPIE. 5453 (14) (2004).
  10. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
    [CrossRef]
  11. A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013).
    [CrossRef]
  12. H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).
  13. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, R. Gadonas, J. S. Juodazis and A. Piskarskas, “Femtosecond laser fabrication of hybrid micro-optical elements and their integration on fiber tip,” SPIE 1176 (2010).
  14. H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
    [CrossRef]
  15. S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
    [CrossRef]
  16. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
    [CrossRef]
  17. R. Buividas, S. Rekstyte, M. Malinauskas, and S. Juadkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express3(10), 1674–1686 (2013).
    [CrossRef]
  18. A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).
  19. M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, and N. Takahashi, “Fabrication of large-core, high-Δ optical waveguides in polymers,” Appl. Opt.34(6), 1041–1046 (1995).
    [CrossRef] [PubMed]
  20. G. Langer, I. Muehlbacher, S. Pichler, H. Stahr, F. Stelzer and J. Sassmannshausen, PCT Int. Appl. WO 2009021256 A1 20090219 (2009).
  21. S. Pichler, PhD Thesis, TU Graz (2007).
  22. R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
  23. R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
    [CrossRef]
  24. R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci.247(1–4), 504–512 (2005).
    [CrossRef]
  25. V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).
  26. S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express21(14), 17028–17041 (2013).
    [CrossRef] [PubMed]
  27. C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).
  28. J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring (Hanser, 1995).
  29. Morrison and Boyd, Organic Chemistry, Fourth Edition (Prentice Hall, 1983), p. 961.

2013 (3)

2008 (1)

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

2007 (3)

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

2006 (1)

S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
[CrossRef]

2005 (2)

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci.247(1–4), 504–512 (2005).
[CrossRef]

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
[CrossRef]

2004 (2)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).

2003 (3)

H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
[CrossRef]

2001 (2)

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

1997 (1)

D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics11(3), 155–168 (1997).

1996 (1)

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

1995 (1)

1988 (1)

Amano, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Berger, C.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Buividas, R.

Camposeo, A.

A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).

Esener, S. C.

Fazlic, A.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

Feldman, M. R.

Gao, R. Y.

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

Grogger, W.

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Gu, M.

S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
[CrossRef]

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

Guest, C. C.

Guttmann, J.

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

Haase, A.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

Hayashida, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Heller, C.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Hikita, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Houbertz, R.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci.247(1–4), 504–512 (2005).
[CrossRef]

Huber, H. P.

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

Ichikawa, T.

Imamura, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Inführ, R.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Ito, H.

Jakopic, G.

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
[CrossRef]

Juadkazis, S.

Juodkazis, S.

Kagami, M.

Kalinyaprak-Icten, K.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Kato, S.

Kawata, S.

H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).

H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

Kossel, M.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Krivec, S.

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Kuna, L.

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Langer, G.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

Lee, S. H.

Leeb, W.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

Leizing, G.

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

Lichtenegger, H.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Lichtenegger, H. C.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Liska, R.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Lunitz, B.

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
[CrossRef]

Malinauskas, M.

Matsko, N.

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Matsuda, M.

Menolfi, C.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics11(3), 155–168 (1997).

Moisel, J.

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

Morf, T.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Nguyen, L. H.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

Norwood, R. A.

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

Persano, L.

A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013).
[CrossRef]

Pisigano, D.

A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013).
[CrossRef]

Pucher, N.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
[CrossRef]

Rekstyte, S.

Rekštyte, S.

Rode, M.

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

Satzinger, V.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Schmatz, M.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Schmid, V.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

Schmidt, V.

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Seidl, B.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Serbin, J.

S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
[CrossRef]

Shama, J.

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

Stampfl, J.

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

Straub, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

Sugawara, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Sun, H. B.

H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).

Sun, H.-B.

Takahashi, N.

Teng, C. C.

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

Toifl, T.

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
[CrossRef]

Ullrich, G.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Usui, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Watanabe, T.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
[CrossRef]

Wu, S.

S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater.14(19), 1339–1365 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.)80(3), 621–626 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci.254(4), 836–840 (2007).
[CrossRef]

R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci.247(1–4), 504–512 (2005).
[CrossRef]

APS (1)

H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS170, 169–273 (2004).

Electron. Lett. (1)

B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett.37(17), 1079 (2001).
[CrossRef]

J. Lightwave Technol. (2)

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol.14(10), 2338–2343 (1996).
[CrossRef]

H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21(3), 624–633 (2003).
[CrossRef]

J. Non-Crsyt. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids330, 1–12 (2003).

J. Optoelectronics (1)

D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics11(3), 155–168 (1997).

J. Photochem. Photobiol. Chem. (1)

S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem.181(1), 1–11 (2006).
[CrossRef]

Journal of Polymer Sci. (1)

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci.45(15), 3280–3291 (2007).

Macromol. Mater. Eng. (1)

A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng.298(5), 487–503 (2013).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004).
[CrossRef]

Opt. Mater. Express (1)

Proc. SPIE (3)

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE7053, 70530B (2008).
[CrossRef]

C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE4942, 222–235 (2003).
[CrossRef]

V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE6476, 64760P (2007).

SPIE, Bellingham, MA (1)

R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA19, 4439 (2001).

Other (7)

G.L Bona, B.J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann and F. Horst “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. of SPIE. 5453 (14) (2004).

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, R. Gadonas, J. S. Juodazis and A. Piskarskas, “Femtosecond laser fabrication of hybrid micro-optical elements and their integration on fiber tip,” SPIE 1176 (2010).

G. Langer, I. Muehlbacher, S. Pichler, H. Stahr, F. Stelzer and J. Sassmannshausen, PCT Int. Appl. WO 2009021256 A1 20090219 (2009).

S. Pichler, PhD Thesis, TU Graz (2007).

R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).

J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring (Hanser, 1995).

Morrison and Boyd, Organic Chemistry, Fourth Edition (Prentice Hall, 1983), p. 961.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of acryloxymethyl trimethoxy silane, silanol terminated dimethyl diphenyl polysiloxane and possible cross linking reactions of polymer and cross linker.

Fig. 2
Fig. 2

Section of FT-IR spectra of silanol terminated polysiloxane cross linked with 20 wt. % acryloxymethyl trimethoxy silane before, (solid line) and after UV exposure, (dashed line).

Fig. 3
Fig. 3

% double bond conversion (DBC), (calculated from stretching vibration mode at 1636 cm−1) of acrylate functional group during UV exposure of samples containing different photoinitiators and different light intensities. ▲ = Irgacure 379, UV intensity = 0.7 W/cm2 ● = N-DPD, UV intensity 0.1 W/cm2, ◊ = N-DPD, UV intensity 0.7 W/cm2

Fig. 4
Fig. 4

NIR spectra of non-illuminated (dashed line with dots) representing the cladding material, and illuminated (solid line) representing the waveguide core material of silanol terminated polysiloxane cross linked with acryloxymethyl trimethoxy silane

Fig. 5
Fig. 5

Waveguide structures inscribed using different laser powers 190-230) detected by phase contrast microscopy

Fig. 6
Fig. 6

Waveguide bundle cross section observed by optical microscopy, structured with a laser power of 200 (1mW/cm2) – The irregularities observed in the image arose from the method of cutting the flexible matrix material to view the cross sections

Fig. 7
Fig. 7

Schematic representation of an optoelectronic PCB

Fig. 8
Fig. 8

Bundle of 7 waveguides structured with a laser power of 200 µW detected by phase contrast microscopy

Fig. 9
Fig. 9

Photocurrent measurements of PCB demonstrators directly after and a few days storage TPA structuring

Tables (1)

Tables Icon

Table 1 Calculated optical losses in dB/cm for illuminated and non-illuminated material at selected wavelengths

Metrics