Abstract

We report on photoluminescence from Eu3+-activated Na,Y-silicates of the Na3YSi3O9 type. The effect of structural environment on Eu3+-related emission is considered by comparing a glassy reference host to its crystalline correspondents which are obtained through crystallization of the super-cooled melt. Crystallization is accompanied by a quantitative increase in quantum yield and external efficiency of photoluminescence. At the same time, strong Stark splitting of the emission bands and significant changes in the spectral symmetry of photoemission with a notable relative enhancement of the 5D07F4 relaxation are observed. The results indicate that Eu3+ ions partition on Y3+ lattice sites which undergo changes in coordination, volume and symmetry when moving from glassy to crystalline environment. Potential application of such Eu3+-activated Na3YSi3O9 silicate glass ceramics in light converters is considered.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(S4Suppl 4), A575–A583 (2010).
    [CrossRef] [PubMed]
  2. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
    [CrossRef]
  3. H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
    [CrossRef] [PubMed]
  4. H. Guo, X. F. Wang, J. D. Chen, and F. Li, “Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses,” Opt. Express18(18), 18900–18905 (2010).
    [CrossRef] [PubMed]
  5. X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
    [CrossRef]
  6. Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
    [CrossRef] [PubMed]
  7. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  8. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
    [CrossRef]
  9. W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
    [CrossRef] [PubMed]
  10. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
    [CrossRef] [PubMed]
  11. L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
    [CrossRef]
  12. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
    [CrossRef]
  13. M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
    [CrossRef]
  14. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  15. E. Doris, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Series Mater. Sci.Eng. 2, 012001 (2009).
  16. G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
    [CrossRef]
  17. G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012).
    [CrossRef] [PubMed]
  18. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).
  19. G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
    [CrossRef]
  20. G. Partridge, “Glass-ceramics with unusual electrical properties,” Adv. Mater.4(10), 668–673 (1992)
    [CrossRef]
  21. C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
    [CrossRef]
  22. Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
    [CrossRef]
  23. D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
    [CrossRef]
  24. N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
    [CrossRef]
  25. É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
    [CrossRef]
  26. Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
    [CrossRef]
  27. J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).
  28. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta57(16), 3961–3970 (1993).
    [CrossRef]
  29. J. A. Duffy, “Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B46, 500–504 (2005).
  30. G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011).
    [CrossRef] [PubMed]
  31. Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
    [CrossRef]
  32. G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013).
    [CrossRef]
  33. M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
    [CrossRef] [PubMed]
  34. P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
    [CrossRef]
  35. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  36. M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
    [CrossRef]

2013 (6)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
[CrossRef]

Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013).
[CrossRef]

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

2012 (4)

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012).
[CrossRef] [PubMed]

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

2011 (7)

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011).
[CrossRef] [PubMed]

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
[CrossRef]

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

2010 (5)

2009 (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

2005 (3)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

J. A. Duffy, “Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B46, 500–504 (2005).

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

2003 (2)

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

2002 (1)

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

1997 (1)

C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
[CrossRef]

1993 (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta57(16), 3961–3970 (1993).
[CrossRef]

1992 (1)

G. Partridge, “Glass-ceramics with unusual electrical properties,” Adv. Mater.4(10), 668–673 (1992)
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1970 (1)

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

1947 (1)

J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).

Ananias, D.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Batentschuk, M.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Belov, N. V.

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

Borchardt, R.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Brabec, C. J.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Brinkley, S.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Buerger, J. M.

J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).

Carlos, L. D.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Chaudhuri, J.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Chen, G.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Chen, J. D.

Chmelka, B. F.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Cicconi, M. R.

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

Courtial, P.

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

Da, N.

Davis, M.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

DenBaars, S. P.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Dingwell, D. B.

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

Duan, C.-K.

H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
[CrossRef] [PubMed]

Duffy, J. A.

J. A. Duffy, “Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B46, 500–504 (2005).

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta57(16), 3961–3970 (1993).
[CrossRef]

Ferreira, A.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Gao, G.

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013).
[CrossRef]

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012).
[CrossRef] [PubMed]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011).
[CrossRef] [PubMed]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

George, N.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Ghosh, P.

P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
[CrossRef]

Giuli, G.

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

Guo, H.

Hamburger, G. E.

J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).

Hirosaki, N.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Holtz, M.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Hong, G.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

Hope-Weeks, L. J.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Hu, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Ilyukhin, V. V.

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

Im, W. B.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Jia, G.

H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
[CrossRef] [PubMed]

Jung, J.

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

Kim, C. H.

C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kim, M. A.

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

Kimoto, K.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Klein, G. E.

J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).

Krolikowski, S.

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
[CrossRef]

Kurzman, J.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Kuz’min, É. A.

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

Lee, S. J.

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

Li, F.

Liang, X.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Liao, L.

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Lin, Z.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Liu, B.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Lopes, M.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Maksimov, B. A.

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

Mao, Z.

Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
[CrossRef]

Marathe, A.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Meszaros, R.

Mho, S.

C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
[CrossRef]

Mikhailovsky, A.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Mitomo, M.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Morais, C. M.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Mudring, A.-V.

P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
[CrossRef]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Nass, P.

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
[CrossRef]

Paris, E.

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

Park, H. L.

C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
[CrossRef]

Park, J. K.

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

Partridge, G.

G. Partridge, “Glass-ceramics with unusual electrical properties,” Adv. Mater.4(10), 668–673 (1992)
[CrossRef]

Pei, Z.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

Peng, M.

G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012).
[CrossRef] [PubMed]

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Rainho, J. P.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Reibstein, S.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Rocha, J.

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Scheiner, S.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Schmidt, M. A.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Schweizer, P.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Seemann, B.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Sekiguchi, T.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Seshadri, R.

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Sohal, S.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Spiecker, E.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

Su, Q.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

Suehiro, T.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Sun, L.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Tang, S.

P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
[CrossRef]

Tanner, P. A.

H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
[CrossRef] [PubMed]

Wang, X. F.

Wang, Y.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Wen, H.

H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
[CrossRef] [PubMed]

Wen, Y.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Wondraczek, L.

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013).
[CrossRef]

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
[CrossRef]

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012).
[CrossRef] [PubMed]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(S3Suppl 3), A312–A318 (2011).
[CrossRef] [PubMed]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

Xia, Z.

Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
[CrossRef]

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Xie, R.-J.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Yamamoto, Y.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Yang, Y.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Yang, Z.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Zeng, H.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

Zhang, F.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Zhang, J.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Zhang, X.

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

Zhao, Z.

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

Zhou, J.

Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
[CrossRef]

Zhuang, J.

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Adv. Mater. (2)

G. Partridge, “Glass-ceramics with unusual electrical properties,” Adv. Mater.4(10), 668–673 (1992)
[CrossRef]

W. B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B. F. Chmelka, S. P. DenBaars, and R. Seshadri, “Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting,” Adv. Mater.23(20), 2300–2305 (2011).
[CrossRef] [PubMed]

Am. Mineral. (1)

J. M. Buerger, G. E. Klein, and G. E. Hamburger, “The structure of Nepheline,” Am. Mineral.32, 197 (1947).

Appl. Phys. Lett. (1)

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005).
[CrossRef]

Chem. Commun. (Camb.) (1)

M. A. Kim, S. J. Lee, J. Jung, and J. K. Park, “A facile reduction of Eu3+ to Eu2+ in gadolinium monosulfide nanoparticles using a mixed solvent of oleic acid/hexadecylamine,” Chem. Commun. (Camb.)48(6), 904–906 (2011).
[CrossRef] [PubMed]

Chem. Mater. (1)

D. Ananias, J. P. Rainho, A. Ferreira, M. Lopes, C. M. Morais, J. Rocha, and L. D. Carlos, “Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates: Na3ErSi3O9, a New Infrared Emitter,” Chem. Mater.14(4), 1767–1772 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

M. Peng, Z. Pei, G. Hong, and Q. Su, “Study on the reduction of Eu3+→ Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere,” Chem. Phys. Lett.371(1-2), 1–6 (2003).
[CrossRef]

Geochim. Cosmochim. Acta (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta57(16), 3961–3970 (1993).
[CrossRef]

Inorg. Chem. (1)

Z. Xia, J. Zhuang, and L. Liao, “Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (1)

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The Effect of Fluorine Anions on the Luminescent Properties of Eu-Doped Oxyfluoride Aluminosilicate Glasses,” J. Am. Ceram. Soc.93(10), 3095–3098 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

Y. Wen, Y. Wang, F. Zhang, B. Liu, Z. Zhao, J. Zhang, and Z. Yang, “Intense red-emitting NaYSiO4: Eu3+, Mo6+ phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(8), J250–J254 (2011).
[CrossRef]

J. Mater. Chem. (5)

P. Ghosh, S. Tang, and A.-V. Mudring, “Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods,” J. Mater. Chem.21(24), 8640–8644 (2011) .
[CrossRef]

X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, and J. Chaudhuri, “Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+,” J. Mater. Chem.22(13), 6485–6490 (2012).
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012).
[CrossRef]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reducing of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem.13(5), 1202–1205 (2003).
[CrossRef]

J. Mater. Chem. C (3)

L. Wondraczek, S. Krolikowski, and P. Nass, “Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics,” J. Mater. Chem. C1(26), 4078–4086 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C2(4), 691–695 (2013).
[CrossRef]

Z. Xia, J. Zhou, and Z. Mao, “Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes,” J. Mater. Chem. C1(37), 5917–5924 (2013).
[CrossRef]

J. Non-Cryst. Solids (1)

M. R. Cicconi, G. Giuli, E. Paris, P. Courtial, and D. B. Dingwell, “Europium structural environment in a sodium disilicate glass by XAS,” J. Non-Cryst. Solids362, 162–168 (2013).
[CrossRef]

J. Struct. Chem. (1)

É. A. Kuz’min, B. A. Maksimov, V. V. Ilyukhin, and N. V. Belov, “Crystal structure of synthetic Na, Y-orthogermanate, NaYGeO4,” J. Struct. Chem.11(1), 152–154 (1970).
[CrossRef]

Nat Commun (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat Commun4, 2047 (2013), doi:.
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

H. Wen, G. Jia, C.-K. Duan, and P. A. Tanner, “Understanding Eu3+emission spectra in glass,” Phys. Chem. Chem. Phys.12(33), 9933–9937 (2010).
[CrossRef] [PubMed]

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B (2)

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52, 59–63 (2011).

J. A. Duffy, “Optical basicity analysis of glasses containing trivalent scandium, yttrium, gallium and indium,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B46, 500–504 (2005).

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Solid State Commun. (1)

C. H. Kim, H. L. Park, and S. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Commun.101(2), 109–113 (1997).
[CrossRef]

Other (1)

E. Doris, “Photoluminescence in glasses and glass ceramics,” IOP Conf. Series Mater. Sci.Eng. 2, 012001 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) DSC curve of the NYSA glass (obtained at 20 K/min). (b) Ex situ XRD patterns of the as-melted NYSA glass and glass ceramic, exemplarily shown for 16 h annealing at 800 °C. The crystal structures of Na3YSi3O9, NaYSiO4 and NaAlSiO4 are schematically shown in (c-e).

Fig. 2
Fig. 2

Room-temperature photoluminescence excitation (a, PLE, monitoring the PL line of Eu3+ at 612 nm) and emission (b, PL, excited at 394 nm) spectra of the as-melted NYSA glass and corresponding glass ceramics (labels: annealing time at 800 °C). (c) Integrated PL intensity over the full spectrum and peak PL intensity of 612 nm as a function of annealing time. Lines in (b) are guides for the eye. Inset of (a): Energy level diagram of the Eu3+ ion. Inset of (b): Zoom at the spectral region of 500-570 nm. Lines in (c) are guides for the eye.

Fig. 3
Fig. 3

PL spectra (a, normalized to the PL peak at 612 nm) and annealing-time-dependent asymmetry ratio R of the PL intensities of 5D07F2 and 5D07F1 for the NYSA glass and corresponding glass ceramics (b).

Fig. 4
Fig. 4

Normalized PL decay curves of the Eu3+-activated NYSA glass and glass ceramics annealed at 800 °C for different times under excitation at 394 nm and monitoring PL at (a) 591 nm (5D07F1), (b) 612 nm (5D07F2) and (c) 702 nm (5D07F4) (labels: annealing time at 800 °C). Inset of (a), (b) and (c): PL lifetimes of Eu3+ dependent on annealing times at 800 °C. Lines in the inset of (a), (b) and (c) are guides for the eye.

Tables (1)

Tables Icon

Table 1 Relative difference in ionic radii (Dr (%) = 100 × [Rm (CN) –Rd (CN)]/Rm (CN)) between matrix cations and dopant Eu3+ [2]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η eQE =( L s L R )/ E R
Λ= i X i × Λ i

Metrics