Abstract

A numerical framework based on the finite-difference time-domain method is proposed for the rigorous study of electro-optically tunable terahertz devices based on liquid crystals. The formulation accounts for both the liquid-crystal full-tensor anisotropy and the dispersion of its complex refractive indices, which is described via modified Lorentzian terms. Experimentally characterized liquid-crystalline materials in the terahertz spectrum are fitted and modeled in benchmark examples, directly compared with reference analytical or semi-analytical solutions. In addition, the efficiency of broadband time-domain modeling of the proposed technique is also demonstrated by accurately reproducing time-domain spectroscopy measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).
  2. E.R. Mueller, “Terahertz radiation sources for imaging and sensing applications,” Photon. Spectra40, 60–69 (2006).
  3. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
    [CrossRef] [PubMed]
  4. D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express21, 8240–8250 (2013).
    [CrossRef] [PubMed]
  5. D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett.102, 101103 (2013).
    [CrossRef]
  6. N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.
  7. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
    [CrossRef]
  8. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
    [CrossRef] [PubMed]
  9. U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
    [CrossRef]
  10. M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).
  11. M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
    [CrossRef]
  12. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31, 1112–1114 (2006).
    [CrossRef] [PubMed]
  13. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett.33, 1174–1176 (2008).
    [CrossRef] [PubMed]
  14. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
    [CrossRef]
  15. T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
    [CrossRef]
  16. C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
    [CrossRef]
  17. H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
    [CrossRef]
  18. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
    [CrossRef]
  19. C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
    [CrossRef]
  20. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
    [CrossRef] [PubMed]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).
  22. N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
    [CrossRef]
  23. L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006).
    [CrossRef]
  24. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000).
    [CrossRef]
  25. M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
    [CrossRef]
  26. G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009).
    [CrossRef] [PubMed]
  27. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
    [CrossRef]
  28. K. P. Prokopidis, D. C. Zografopoulos, and E. E. Kriezis, “Rigorous broadband investigation of liquid-crystal plasmonic structures using FDTD dispersive-anisotropic models,” J. Opt. Soc. Am. B30, 2722–2730 (2013).
    [CrossRef]
  29. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett.37, 112–114 (2012).
    [CrossRef] [PubMed]
  30. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
    [CrossRef]
  31. U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
    [CrossRef]
  32. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007).
    [CrossRef] [PubMed]
  33. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
    [CrossRef]
  34. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
    [CrossRef]
  35. A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
    [CrossRef]
  36. K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol.31, 2467–2476 (2013).
    [CrossRef]
  37. N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
    [CrossRef]
  38. O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012).
    [CrossRef]
  39. MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, USA ( www.mathworks.com ).
  40. I.-C. Khoo, Liquid Crystals, 2, (Wiley, 2007).
  41. D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” J. Appl. Phys.46, 3746–3751 (1975).
    [CrossRef]
  42. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000).
    [CrossRef]
  43. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
    [CrossRef] [PubMed]

2013 (8)

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett.102, 101103 (2013).
[CrossRef]

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express21, 8240–8250 (2013).
[CrossRef] [PubMed]

K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol.31, 2467–2476 (2013).
[CrossRef]

K. P. Prokopidis, D. C. Zografopoulos, and E. E. Kriezis, “Rigorous broadband investigation of liquid-crystal plasmonic structures using FDTD dispersive-anisotropic models,” J. Opt. Soc. Am. B30, 2722–2730 (2013).
[CrossRef]

2012 (10)

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
[CrossRef]

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012).
[CrossRef]

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett.37, 112–114 (2012).
[CrossRef] [PubMed]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
[CrossRef]

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

2010 (2)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

2009 (2)

C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
[CrossRef]

G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009).
[CrossRef] [PubMed]

2008 (3)

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett.33, 1174–1176 (2008).
[CrossRef] [PubMed]

2007 (2)

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007).
[CrossRef] [PubMed]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[CrossRef]

2006 (4)

C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett.31, 1112–1114 (2006).
[CrossRef] [PubMed]

E.R. Mueller, “Terahertz radiation sources for imaging and sensing applications,” Photon. Spectra40, 60–69 (2006).

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006).
[CrossRef]

2005 (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

2000 (2)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000).
[CrossRef]

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000).
[CrossRef]

1975 (1)

D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” J. Appl. Phys.46, 3746–3751 (1975).
[CrossRef]

Akyurtlu, A.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Altmann, K.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Asquini, R.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Beccherelli, R.

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett.102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express21, 8240–8250 (2013).
[CrossRef] [PubMed]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009).
[CrossRef] [PubMed]

Bellini, B.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” J. Appl. Phys.46, 3746–3751 (1975).
[CrossRef]

Bowen, P. T.

M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
[CrossRef]

Celik, M. A.

Cernat, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

Chan, C.-H.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Chang, C.-L.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Chen, H.-L.

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Chigrinov, V. G.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Chodorow, U.

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
[CrossRef]

Chojnowska, O.

U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
[CrossRef]

O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012).
[CrossRef]

Czuprynski, K.

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

d’Alessandro, A.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Dabrowski, R.

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012).
[CrossRef]

Deibel, J. A.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Deinega, A.

Donisi, D.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009).
[CrossRef] [PubMed]

Dou, L.

L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006).
[CrossRef]

Dridi, M.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

Dziaduszek, J.

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

Elston, S. J.

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000).
[CrossRef]

Escuti, M. J.

M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
[CrossRef]

Fan, F.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Fischer, B. M.

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

Frenking, G.

Fujii, A.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Garbat, K.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000).
[CrossRef]

Gilardi, G.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

G. Gilardi, D. Donisi, R. Beccherelli, and A. Serpengüzel, “Liquid crystal tunable filter based on sapphire microspheres,” Opt. Lett.34, 3253–3255 (2009).
[CrossRef] [PubMed]

Goodhue, W. D.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

Han, H.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Hendry, E.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Hsieh, C.-F.

Hsieh, F. J.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Isaac, T. H.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Ito, R.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Jansen, C.

N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.

Jepsen, P. U.

Jewell, S. A.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

John, S.

Kang, Z.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, Liquid Crystals, 2, (Wiley, 2007).

Koch, M.

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007).
[CrossRef] [PubMed]

N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.

Kriezis, E. E.

K. P. Prokopidis, D. C. Zografopoulos, and E. E. Kriezis, “Rigorous broadband investigation of liquid-crystal plasmonic structures using FDTD dispersive-anisotropic models,” J. Opt. Soc. Am. B30, 2722–2730 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000).
[CrossRef]

Kubo, H.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Kula, P.

Kumagai, T.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Lai, Y.-C.

Laroche, T.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[CrossRef]

Le Cunff, L.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

Li, H.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Li, J.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

Li, Y.-T.

C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
[CrossRef]

Lim, M.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Lin, C.-H.

C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
[CrossRef]

Lin, C.-J.

C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
[CrossRef]

Lin, H.-R.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Ling, F.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Liu, K.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

Mikulics, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

Mikulicz, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

Miskiewicz, M. N.

M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
[CrossRef]

Mueller, E.R.

E.R. Mueller, “Terahertz radiation sources for imaging and sensing applications,” Photon. Spectra40, 60–69 (2006).

Nose, T.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Ozaki, M.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Palka, N.

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

Pan, C.-L.

Pan, R.-P.

Park, H.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Parka, J.

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
[CrossRef]

Parrott, E. P. J.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Pickwell-MacPherson, E.

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Prokopidis, K. P.

Pun, Y.-B.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Pupeza, I.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007).
[CrossRef] [PubMed]

Reuter, M.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000).
[CrossRef]

Ruan, S.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Sambles, J. R.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Scheller, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Scherger, B.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

Sebak, A. R.

L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006).
[CrossRef]

Serpengüzel, A.

Shakfa, M.

N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

Shen, X.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

Takeya, K.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Tang, T.-T.

Tibolt, A.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Tonouchi, M.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Trotta, M.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Urban, S.

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

Vial, A.

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[CrossRef]

Vieweg, N.

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express20, 28249–28256 (2012).
[CrossRef] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.

Wang, W.-C.

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

Wilk, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15, 4335–4350 (2007).
[CrossRef] [PubMed]

Wongkasem, N.

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

Yoshida, H.

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

Yun-Shik, L.

L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).

Zhang, C.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Zhang, T.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Zhang, X.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Zhu, C.

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

Zografopoulos, D. C.

APL Mater. (1)

M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dąbrowski, “Highly birefringent, low-loss liquid crystals for terahertz applications,” APL Mater.1, 012107 (2013).
[CrossRef]

Appl. Phys. A: Mater. Sci. Process. (1)

A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A: Mater. Sci. Process.103, 849–853 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

D. C. Zografopoulos and R. Beccherelli, “Design of a vertically coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett.102, 101103 (2013).
[CrossRef]

C.-L. Chang, W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett.102, 151903 (2013).
[CrossRef]

IEEE J. Select. Top. Quant. Electron. (1)

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multilayer structures,” IEEE J. Select. Top. Quant. Electron.14, 392–398 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett.21, 730–732 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “A switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron.46, 762–768 (2010).
[CrossRef]

Infrared Phys. Tech. (1)

H. Li, C. Zhu, K. Liu, X. Zhang, F. Ling, T. Zhang, X. Shen, C. Zhang, and S. Ruan, “Terahertz electrically controlled nematic liquid crystal lens,” Infrared Phys. Tech.54, 439–444 (2011).
[CrossRef]

J. Appl. Phys. (1)

D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” J. Appl. Phys.46, 3746–3751 (1975).
[CrossRef]

J. Display Technol. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol.1, 51–61 (2005).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31, 1312–1320 (2010).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dąbrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

M. Reuter, K. Garbat, N. Vieweg, B. M. Fischer, R. Dąbrowski, M. Koch, J. Dziaduszek, and S. Urban, “Terahertz and optical properties of nematic mixtures composed of liquid crystal isothiocyanates, fluorides and cyanides,” J. Mater. Chem.1, 4457–4463 (2013).

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys.40, 7152–7158 (2007).
[CrossRef]

Lab Chip (1)

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip12, 3598–3610 (2012).
[CrossRef] [PubMed]

Microw. Opt. Techn. Let. (1)

L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Techn. Let.48, 2083–2090 (2006).
[CrossRef]

Microw. Opt. Techn. Lett. (1)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Techn. Lett.27, 334–339 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

T. Kumagai, R. Ito, K. Takeya, H. Yoshida, H. Kubo, A. Fujii, T. Nose, M. Tonouchi, and M. Ozaki, “Tunable terahertz filter using an etalon with a nematic liquid crystal layer and its response speed,” Mol. Cryst. Liq. Cryst.561, 82–88 (2012).
[CrossRef]

New J. Phys. (1)

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10, 033012 (2008).
[CrossRef]

Opt. Commun. (1)

N. Vieweg, M. Shakfa, and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun.284, 1887–1889 (2011).
[CrossRef]

Opt. Express (1)

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20, 11899–11905 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun.177, 69–77 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phase Transit. (1)

U. Chodorow, J. Parka, K. Garbat, N. Palka, and K. Czupryński, “Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range,” Phase Transit.85, 337–344 (2012).
[CrossRef]

Photon. Lett. Poland (1)

O. Chojnowska and R. Dąbrowski, “The influence of cyano compound on liquid crystal blue phase range,” Photon. Lett. Poland4, 81–83 (2012).
[CrossRef]

Photon. Spectra (1)

E.R. Mueller, “Terahertz radiation sources for imaging and sensing applications,” Photon. Spectra40, 60–69 (2006).

Photon. Lett. Poland (1)

U. Chodorow, J. Parka, and O. Chojnowska, “Liquid crystal materials in THz technologies,” Photon. Lett. Poland4, 112–114 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett.110, 177403 (2013).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. N. Miskiewicz, P. T. Bowen, and M. J. Escuti, “Efficient 3D FDTD analysis of arbitrary birefringent and dichroic media with obliquely incident sources,” Proc. SPIE8255, 82550W (2012).
[CrossRef]

Prog. Electromagn. Res. (1)

N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, “Novel broadband terahertz negative refractive index metamaterials: analysis and experiment,” Prog. Electromagn. Res.64, 205–218 (2006).
[CrossRef]

Other (5)

MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, USA ( www.mathworks.com ).

I.-C. Khoo, Liquid Crystals, 2, (Wiley, 2007).

L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3, (Artech House, 2005).

N. Vieweg, C. Jansen, and M. Koch, “Liquid crystals and their applications in the THz frequency range,” in “Terahertz spectroscopy and imaging,” vol. 171 of Springer Series in Optical Sciences, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2013), pp. 301–326.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The local LC orientation is described by the nematic molecular director, which is defined via the spatially dependent tilt (θ) and twist (φ) angles. (b) Unit cell employed in the proposed FDTD formulation.

Fig. 2
Fig. 2

Experimentally measured and m-Lor fitted values of (a) refractive index and (b) extinction coefficient of the three reference LC materials used in this study, i.e., 5CB [7], BL037 [8], and the low-loss mixture of fluorinated biphenyls 1855 [9,38]. Markers denote experimental values, continuous and dashed lines denote fitted extraordinary and ordinary index values, respectively. The inset in (b) shows the molecular structure of the three constituent molecules of 1855 (n = 2, 3, 5).

Fig. 3
Fig. 3

Measured THz pulse waveforms for the experimental characterization of the LC mixture 1855 [9] and FDTD simulations using the m-Lor fitted values of Table 1.

Fig. 4
Fig. 4

Transmittance of a LC slab between cross polarizers calculated by the proposed method for the three reference LC materials. Results are compared with the analytic solution of both the experimentally measured LC index data and their fit to the m-Lor dispersive model. The slab thickness is d = 1.5 mm and the LC twist angle φ = 45°.

Fig. 5
Fig. 5

Transmittance of a LC-THz Fabry-Pérot filter calculated via the Berreman 4 × 4 method and the proposed formulation. The reflective mirror is composed of alternating slabs of glass (dg = 38.5 μm, ng = 1.95) and air (da = 75 μm, na = 1). The resonant cavity of thickness dLC = 150 μm is infiltrated with the LC mixture 1855, whose director lies in the xy plane at a fixed angle φ with the x-axis.

Tables (1)

Tables Icon

Table 1 Fitted m-Lor parameters for the ordinary (o) and extraordinary (e) permittivities of the three LC materials under study in the 0.5 – 2 THz spectral window.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ = ( ε o + Δ ε cos 2 θ cos 2 ϕ Δ ε cos 2 θ sin ϕ cos ϕ Δ ε sin θ cos θ cos ϕ Δ ε cos 2 θ sin ϕ cos θ ε o + Δ ε cos 2 θ sin 2 ϕ Δ ε sin θ cos θ sin ϕ Δ ε sin θ cos θ cos ϕ Δ ε sin θ cos θ sin ϕ ε o + Δ ε sin 2 θ ) ,
ε x x ( ω ) = ε o ( ω ) + [ ε e ( ω ) ε o ( ω ) ] cos 2 ϕ , ε y y ( ω ) = ε o ( ω ) + [ ε e ( ω ) ε o ( ω ) ] sin 2 ϕ , ε x y ( ω ) = ε y x ( ω ) = [ ε e ( ω ) ε o ( ω ) ] sin ϕ cos ϕ , ε z z ( ω ) = ε o ( ω ) .
D x = ε 0 [ ε o ( ω ) sin 2 ϕ + ε e ( ω ) cos 2 ϕ ] E x + ε 0 [ ε e ( ω ) ε o ( ω ) ] sin ϕ cos ϕ E y ,
D y = ε 0 [ ε e ( ω ) ε o ( ω ) ] sin ϕ cos ϕ E x + ε 0 [ ε o ( ω ) cos 2 ϕ + ε e ( ω ) sin 2 ϕ ] E y ,
D z = ε 0 ε o ( ω ) E z .
W x 1 = ε 0 ε o ( ω ) sin 2 ϕ E x , W x 2 = ε 0 ε e ( ω ) cos 2 ϕ E x ,
W y 1 = 1 2 ε 0 ε e ( ω ) sin ( 2 ϕ ) E y , W y 2 = 1 2 ε 0 ε o ( ω ) sin ( 2 ϕ ) E y ,
R x 1 = 1 2 ε 0 ε e ( ω ) sin ( 2 ϕ ) E x , R x 2 = 1 2 ε 0 ε o ( ω ) sin ( 2 ϕ ) E x ,
R y 1 = ε 0 ε o ( ω ) cos 2 ϕ E y , R y 2 = ε 0 ε e ( ω ) sin 2 ϕ E y .
ε o / e ( ω ) = ε , o / e + a 1 , o / e j ω + a 0 , o / e b 2 , o / e ( j ω ) 2 + b 1 , o / e j ω + b 0 , o / e ,
( b 2 , o δ t 2 Δ t 2 + b 1 , o μ t δ t Δ t + b 0 , o μ t 2 ) W x 1 n = ε 0 sin 2 ϕ ( ε , o b 2 , o δ t 2 Δ t 2 + ( a 1 , o + b 1 , o ε , o ) μ t δ t Δ t + ( a 0 , o + b 0 , o ε , o ) μ t 2 ) E x n ,
W x 1 n + 1 = 1 c o 1 ( c o 4 sin 2 ϕ E x n + 1 + c o 5 sin 2 ϕ E x n + c o 6 sin 2 ϕ E x n 1 c o 2 W x 1 n c o 3 W x 1 n 1 ) ,
c o 1 = b 0 , o 4 + b 1 , o 2 Δ t + b 2 , o Δ t 2 , c o 2 = b 0 , o 2 2 b 2 , o Δ t 2 , c o 3 = b 0 , o 4 b 1 , o 2 Δ t + b 2 , o Δ t 2 , c o 4 = ε 0 ( a 0 , o + ε , o b 0 , o 4 + a 1 , o + b 1 , o ε , o 2 Δ t + ε , o b 2 , o Δ t 2 ) , c o 5 = ε 0 ( a 0 , o + ε , o b 0 , o 2 2 ε , o b 2 , o Δ t 2 ) , c o 6 = ε 0 ( a 0 , o + ε , o b 0 , o 4 a 1 , o + b 1 , o ε , o 2 Δ t + ε , o b 2 , o Δ t 2 ) .
T ( f ) = 0.25 sin 2 ( 2 φ ) | e j [ n e ( f ) j k e ( f ) ] k 0 d e j [ n o ( f ) j k o ( f ) ] k 0 d | 2 ,
T ( f ) = sin 2 ( 2 φ ) sin 2 [ π d f Δ n ( f ) c ] ,

Metrics