Abstract

During surface plasmon polariton (SPP) excitation, the imaging of the interaction between the DC current and the Transverse Mode (TM) optical field is reported for the first time. Using an optical microscope, we have successfully captured images of electro-optic interaction during plasmonic demodulation phenomena. A significant response is observed when images of the transmitted light – which represents SPP excitation – become less bright in the presence of an electric field when the thin-film metal thickness is approximately equivalent to the skin depth of gold (30 nm). The synchronization achieved between the optical reflectance analysis and the SPP imaging shows that maximum interaction is achieved when the optical reflectance change, ΔR is 0.0530.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
    [CrossRef]
  2. A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
    [CrossRef]
  3. C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
    [CrossRef]
  4. H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
    [CrossRef]
  5. I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Boston, MA, Springer 2010).
  6. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
    [CrossRef]
  7. B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009).
    [CrossRef] [PubMed]
  8. Q. Liu and K. S. Chiang, “Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating,” Opt. Express17(10), 7933–7942 (2009).
    [CrossRef] [PubMed]
  9. W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
    [CrossRef]
  10. W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
    [CrossRef]
  11. W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).
  12. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
    [CrossRef]

2013

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
[CrossRef]

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).

2012

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

2011

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

2010

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

2009

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Q. Liu and K. S. Chiang, “Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating,” Opt. Express17(10), 7933–7942 (2009).
[CrossRef] [PubMed]

B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009).
[CrossRef] [PubMed]

Abdullah, A. M.

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

Beauvais, J.

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

Bonroy, K.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Borghs, G.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Chiang, K. S.

Dubowski, J. J.

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

Homola, J.

Hong, S.-H.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Huang, C.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Jimenez, A.

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

Kim, B.-S.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Kong, C.-K.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Lagae, L.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Lee, E.-H.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Lee, M.-W.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Lee, S.-G.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Lepage, D.

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

Liu, D. J.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

Liu, Q.

Malek, M. Z. A.

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

Menon, P. S.

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
[CrossRef]

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).

Mukhtar, W. M.

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
[CrossRef]

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

Noginova, N.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

O, B.-H.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Park, S.-G.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

Reekman, G.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Shaari, S.

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
[CrossRef]

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

Shen, Y. Q.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

Špacková, B.

Tian, H.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

Verstreken, K.

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Wang, H. F.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

Zhou, Z. X.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

Adv. Sci. Let.

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Influences of light coupling techniques to the excitation of surface plasmon polaritons,” Adv. Sci. Let.19(1), 66–69 (2013).
[CrossRef]

J. Opt.

H. F. Wang, Z. X. Zhou, H. Tian, D. J. Liu, and Y. Q. Shen, “Electric control of enhanced lateral shift owing to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal,” J. Opt.12(4), 045708 (2010).
[CrossRef]

J. Phys. Conf. Ser.

W. M. Mukhtar, P. S. Menon, S. Shaari, M. Z. A. Malek, and A. M. Abdullah, “Angle shifting in surface plasmon resonance: experimental and theoretical verification,” J. Phys. Conf. Ser.431, 012028 (2013).
[CrossRef]

Microelectron. Eng.

S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng.87(5-8), 1315–1318 (2010).
[CrossRef]

A. Jimenez, D. Lepage, J. Beauvais, and J. J. Dubowski, “Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices,” Microelectron. Eng.93, 91–94 (2012).
[CrossRef]

C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen–antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Optoelectron Adv. Mat.

W. M. Mukhtar, S. Shaari, and P. S. Menon, “Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly,” Optoelectron Adv. Mat.7, 9–13 (2013).

Phys. Rev. B

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic sytems,” Phys. Rev. B84(3), 035447 (2011).
[CrossRef]

Other

I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels (Boston, MA, Springer 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A schematic diagram of electro-optic interaction imaging using an optical microscope. (b) Electrical circuit used to observe the flow of current in a gold metal-strip thin film during SPP excitation.

Fig. 2
Fig. 2

Illustration of reflectance curves resulting from the interaction between SPP excitation and the DC current in the gold metal strip-thin film with thickness t = 30 nm. (a) Range of incident angles between 30° and 70°. (b) Range of incident angles between 48° and 54°.

Fig. 3
Fig. 3

Illustration of reflectance curves resulting from the interaction between SPP excitation and the DC current in the gold metal strip-thin film with thickness t = 50 nm. (a) Range of incident angles between 30° and 70°. (b) Range of incident angles between 47° and 52°.

Fig. 4
Fig. 4

Illustration of reflectance curves resulting from the interaction between SPP excitation and the DC current in the gold metal strip-thin film with thickness t = 100 nm. (a) Range of incident angles between 30° and 70°. (b) Range of incident angles between 46° and 52°.

Fig. 5
Fig. 5

Transmitted light images of gold metal strip-thin film with thickness t = 30 nm in the absence of DC current, I = 0 mA, and in the presence of DC current, I = I0 = 51.372 mA, using various laser power levels: (a) P = 1.5 mW, (b) P = 1.0 mW, and (c) P = 0.5 mW.

Fig. 6
Fig. 6

Transmitted light images from the gold metal strip-thin film with thickness t = 50 nm in the absence of current, I = 0 mA, and in the presence of current, I = I0 = 51.372 mA, using various laser power levels: (a) P = 1.5 mW, (b) P = 1.0 mW, and (c) P = 0.5 mW.

Fig. 7
Fig. 7

Transmitted light images of the gold metal strip-thin film with thickness t = 100 nm in the absence of DC current, I = 0 mA, and in the presence of DC current, I = I0 = 51.372 mA, using various laser power levels: (a) P = 1.5 mW, (b) P = 1.0 mW, and (c) P = 0.5 mW.

Fig. 8
Fig. 8

(a) Relationship between the optical reflectance R and laser power level P. (b) Effects of gold metal strip- thin film thicknesses t on the values of optical reflectance R.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔR=0.07 e t/21
ΔR=0.17 e t/18
ΔR=0.25 e t/20

Metrics