Abstract

Optical properties of AgxAu1-x alloys were obtained experimentally using spectroscopic ellipsometry measurements on thin films fabricated by electron beam evaporation. Thin film thicknesses varied between 170 and 330 nm, making size effects negligible. Values of the complex refractive index of the pure metals were in good agreement with literature reports. The optical data set reported in this work can accurately reproduce experimental results. This is very important because there are not reliable and systematic optical constants for the alloys. Moreover, we show that the weighted average of the refractive indices of the pure metals fails to represent those of the alloys, not only in the region near the onset for interband transitions but also in the near-IR region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
    [CrossRef]
  3. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
    [CrossRef] [PubMed]
  4. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
    [CrossRef] [PubMed]
  5. F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
    [CrossRef]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  8. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
    [CrossRef]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  12. H. Fukutani, “Optical constants of silver-gold alloys,” J. Phys. Soc. Jpn.30(2), 399–403 (1971).
    [CrossRef]
  13. K. Ripken, “Die optischen konstanten von Au, Ag und ihren legierungen im energiebereich 2, 4 bis 4, 4 eV,” Z. Für Phys. Hadrons Nucl.250(3), 228–234 (1972).
    [CrossRef]
  14. J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B15(6), 3119–3135 (1977).
    [CrossRef]
  15. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
    [CrossRef]
  16. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  17. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun.180(11), 2348–2354 (2009).
    [CrossRef]
  18. M. Thompson, “RUMP: Rutherford Backscattering Spectroscopy analysis package,” http://www.genplot.com/RUMP/index.htm .
  19. G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films234(1-2), 416–422 (1993).
    [CrossRef]
  20. O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
    [CrossRef]
  21. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
    [CrossRef]
  22. M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
    [CrossRef]
  23. B. Johs and J. S. Hale, “Dielectric function representation by B-splines,” Phys. Status Solidi A205(4), 715–719 (2008).
    [CrossRef]
  24. R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012).
    [CrossRef]
  25. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2(9), 1226–1235 (2012).
    [CrossRef]
  26. H.-L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen’s rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
    [CrossRef]

2013 (1)

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

2012 (2)

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun.180(11), 2348–2354 (2009).
[CrossRef]

2008 (1)

B. Johs and J. S. Hale, “Dielectric function representation by B-splines,” Phys. Status Solidi A205(4), 715–719 (2008).
[CrossRef]

2004 (1)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

2001 (1)

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

1999 (2)

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
[CrossRef]

1996 (2)

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

1993 (1)

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films234(1-2), 416–422 (1993).
[CrossRef]

1980 (1)

H.-L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen’s rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

1979 (1)

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
[CrossRef]

1977 (1)

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B15(6), 3119–3135 (1977).
[CrossRef]

1972 (2)

K. Ripken, “Die optischen konstanten von Au, Ag und ihren legierungen im energiebereich 2, 4 bis 4, 4 eV,” Z. Für Phys. Hadrons Nucl.250(3), 228–234 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1971 (1)

H. Fukutani, “Optical constants of silver-gold alloys,” J. Phys. Soc. Jpn.30(2), 399–403 (1971).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Akiyama, S.

Alee, K. S.

Alivisatos, P.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

Alonso, M. I.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
[CrossRef]

Arnold, G. W.

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Battaglin, G.

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Deepak, K. L. N.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Domínguez, C.

M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Engquist, H.-L.

H.-L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen’s rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

Fukutani, H.

H. Fukutani, “Optical constants of silver-gold alloys,” J. Phys. Soc. Jpn.30(2), 399–403 (1971).
[CrossRef]

Garriga, M.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
[CrossRef]

Gonella, F.

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

Grimvall, G.

H.-L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen’s rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

Haglund, R. F.

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hale, J. S.

B. Johs and J. S. Hale, “Dielectric function representation by B-splines,” Phys. Status Solidi A205(4), 715–719 (2008).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hottier, F.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
[CrossRef]

Jellison, G. E.

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films234(1-2), 416–422 (1993).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Johs, B.

B. Johs and J. S. Hale, “Dielectric function representation by B-splines,” Phys. Status Solidi A205(4), 715–719 (2008).
[CrossRef]

Jyothi, L.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kiennemann, A.

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Kuladeep, R.

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

Mazzoldi, P.

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

Nishijima, Y.

Obradors, X.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

Pal, U.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun.180(11), 2348–2354 (2009).
[CrossRef]

Peña, O.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun.180(11), 2348–2354 (2009).
[CrossRef]

Peña-Rodríguez, O.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Pourroy, G.

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Puig, T.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

Rao, D. N.

Richard-Plouet, M.

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Ripken, K.

K. Ripken, “Die optischen konstanten von Au, Ag und ihren legierungen im energiebereich 2, 4 bis 4, 4 eV,” Z. Für Phys. Hadrons Nucl.250(3), 228–234 (1972).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Rivory, J.

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B15(6), 3119–3135 (1977).
[CrossRef]

Roger, A. C.

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Sánchez-Valdés, C. F.

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
[CrossRef]

Tihay, F.

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Appl. Catal. Gen. (1)

F. Tihay, G. Pourroy, M. Richard-Plouet, A. C. Roger, and A. Kiennemann, “Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials,” Appl. Catal. Gen.206(1), 29–42 (2001).
[CrossRef]

Comput. Phys. Commun. (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun.180(11), 2348–2354 (2009).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella, and R. F. Haglund., “Metal nanocluster formation by ion implantation in silicate glasses: Nonlinear optical applications,” J. Nonlinear Opt. Phys. Mater.5(02), 285–330 (1996).
[CrossRef]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999).
[CrossRef]

J. Phys. Soc. Jpn. (1)

H. Fukutani, “Optical constants of silver-gold alloys,” J. Phys. Soc. Jpn.30(2), 399–403 (1971).
[CrossRef]

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

Mater. Chem. Phys. (1)

O. Peña-Rodríguez, C. F. Sánchez-Valdés, M. Garriga, M. I. Alonso, X. Obradors, and T. Puig, “Optical properties of Ceria-Zirconia epitaxial films grown from chemical solutions,” Mater. Chem. Phys.138(2-3), 462–467 (2013).
[CrossRef]

Nat. Biotechnol. (1)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Mater. Express (2)

Phys. Rev. B (4)

H.-L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen’s rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980).
[CrossRef]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B20(8), 3292–3302 (1979).
[CrossRef]

J. Rivory, “Comparative study of the electronic structure of noble-metal-noble-metal alloys by optical spectroscopy,” Phys. Rev. B15(6), 3119–3135 (1977).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

B. Johs and J. S. Hale, “Dielectric function representation by B-splines,” Phys. Status Solidi A205(4), 715–719 (2008).
[CrossRef]

Phys. Status Solidi B (1)

M. Garriga, M. I. Alonso, and C. Domínguez, “Ellipsometry on very thick multilayer structures,” Phys. Status Solidi B215, 247–251 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Thin Solid Films (1)

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films234(1-2), 416–422 (1993).
[CrossRef]

Z. Für Phys. Hadrons Nucl. (1)

K. Ripken, “Die optischen konstanten von Au, Ag und ihren legierungen im energiebereich 2, 4 bis 4, 4 eV,” Z. Für Phys. Hadrons Nucl.250(3), 228–234 (1972).
[CrossRef]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

M. Thompson, “RUMP: Rutherford Backscattering Spectroscopy analysis package,” http://www.genplot.com/RUMP/index.htm .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental and simulated ellipsometric spectra for the AgxAu1-x alloy thin film. Inset: Schematic diagram of the three-phase model used for the ellipsometric analysis of the AgxAu1-x alloy thin films. (b) Comparison between the optical data obtained in this work for Au and Ag (continuous lines) with that reported by Johnson and Christy [10] (symbols). The inset is a zoom in the region of the onset for interband transitions.

Fig. 2
Fig. 2

(a) Refractive indices and (b) extinction coefficients AgxAu1-x alloy thin films, obtained from the ellipsometric analysis.

Fig. 3
Fig. 3

Complex refractive index obtained in this work for Ag, Au (dashed lines) and the Ag0.48Au0.52 alloy (continuous lines) and calculated as the arithmetic average of that of the pure metals (open diamonds).

Fig. 4
Fig. 4

(a) ε, and (b) Γ parameters of Drude’s model as a function of the fraction of Ag for the AgxAu1-x thin films obtained from the fit of the n and k values. The continuous lines are either linear (a) or quadratic (c) fits of the data. Values obtained by fitting optical constants by Johnson and Christy [10] are also shown, as reference.

Fig. 5
Fig. 5

(a) Optical extinction spectra calculated using Mie theory and the alloy optical constants determined in this work. (b) Comparison between the calculated SPR positions and the experimental values reported by Kuladeep et al. [24]

Tables (1)

Tables Icon

Table 1 Thin film thickness and composition of AgxAu1-x alloys.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B i 0 ( x )={ 1, t i x t i+1 0,otherwise
B i k ( x )=( x t i t i+k t i ) B i k1 ( x )+( t i+k+1 x t i+k+1 t i+1 ) B i+1 k1 ( x )
S( x )= i=1 n c i B i k ( x )

Metrics