Abstract

Eu-doped fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) are prepared by solid state reaction. Unlike conventional Eu-doped materials, coexistence of Eu3+ and Eu2+ ions is found from the photoluminescence of Eu-doped apatites M2Y3[SiO4]3F (M = Sr, Ba) which were prepared in reducing atmosphere. Eu2+ ions are converted from Eu3+ ions in the reduction process. It is suggested that Eu2+ ions occupy A(I) (4f) or A(II) (6h) crystallographic site in the apatite lattices. Intense emission lines due to Eu3+ are observed at 600-630 nm, while broad emission band due to Eu2+ is observed at 450-650 nm. These emissions combined with blue emission from LED are suitable to obtain white light, i.e., white LEDs for lighting and display. Different luminescence characteristics are obtained between Sr2Y3[SiO4]3F:Eu and Ba2Y3[SiO4]3F:Eu, which were prepared in reducing atmosphere.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969).
    [CrossRef]
  2. Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
    [CrossRef]
  3. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
    [CrossRef]
  4. X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
    [CrossRef]
  5. M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
    [CrossRef]
  6. M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
    [CrossRef]
  7. G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
    [CrossRef]
  8. G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
    [CrossRef]
  9. R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
    [CrossRef]
  10. N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004).
    [CrossRef]
  11. H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
    [CrossRef]
  12. C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
    [CrossRef]
  13. P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
    [CrossRef]
  14. A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
    [CrossRef]
  15. M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
    [CrossRef]
  16. G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969).
    [CrossRef]
  17. R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
    [CrossRef]
  18. R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
    [CrossRef]
  19. K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
    [CrossRef]
  20. Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
    [CrossRef]
  21. D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
    [CrossRef]
  22. B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010).
    [CrossRef] [PubMed]
  23. U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
    [CrossRef]
  24. J. Rubio, “Doubly-divalent rare-earth ions in halide crystals,” J. Phys. Chem. Solids52(1), 101–174 (1991).
    [CrossRef]

2013

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

2012

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

2011

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
[CrossRef]

2010

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
[CrossRef]

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010).
[CrossRef] [PubMed]

2007

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

2006

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

2004

N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004).
[CrossRef]

2003

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

2002

D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
[CrossRef]

2001

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

1999

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

1995

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

1994

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
[CrossRef]

1991

J. Rubio, “Doubly-divalent rare-earth ions in halide crystals,” J. Phys. Chem. Solids52(1), 101–174 (1991).
[CrossRef]

1969

K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969).
[CrossRef]

G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969).
[CrossRef]

Al-Kattan, A.

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

Ariguib, N. K.

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

Ayedi, M. T.

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

Blasse, G.

G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969).
[CrossRef]

Chandran, R. G.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Chen, L.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

Dexpert-Ghys, J.

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

Dong, Z.

Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
[CrossRef]

Drouet, C.

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

Dufour, P.

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

El Ouenzerfi, R.

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

Gao, Y.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Gong, M.

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

Gong, M. L.

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

Gui, D.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Heikenfeld, J.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Heward, W. J.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Hömmericha, U.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Hu, Y. H.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

Huang, J.

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

Huang, L.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

Hui, Z.

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Jagannathan, R.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

Jagannathant, R.

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

Jeyagopal, P.

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

Jing, X.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Ju, G. F.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

Karpov, A. M.

M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
[CrossRef]

Kbir-Ariguib, N.

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

Kong, L. L.

B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010).
[CrossRef] [PubMed]

Kottaisamy, M.

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

Lakshminarasimhan, N.

N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004).
[CrossRef]

Lee, D. S.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Liang, H. B.

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

Lin, J.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

Liu, H.

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Mani, A.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

Marimuthu, K.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

Mi, R.

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Mu, Z. F.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

Muralidharan, G.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

Narayanan, R. L.

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

Nehru, L. C.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

Nyein, E. E.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Ohta, M.

M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
[CrossRef]

Piriou, B.

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

Qin, R.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Ramesh, R.

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

Rao, R. P.

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

Rubio, J.

J. Rubio, “Doubly-divalent rare-earth ions in halide crystals,” J. Phys. Chem. Solids52(1), 101–174 (1991).
[CrossRef]

Sato, M.

M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
[CrossRef]

Seager, C. H.

D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
[CrossRef]

Setlur, A. A.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Shankar, M. V.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Shen, Y.

Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
[CrossRef]

Shkvarin, A. S.

M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
[CrossRef]

Simpson, R. L.

D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
[CrossRef]

Srivastava, A. M.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

Steckl, A. J.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Su, Q.

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

Sudarsanan, K.

K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969).
[CrossRef]

Tallant, D. R.

D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
[CrossRef]

Tanakasi, T.

M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
[CrossRef]

Tang, X.

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

Teng, X.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

Ternane, R.

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

Tian, G.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Tok, A.

Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
[CrossRef]

Varadaraju, U. V.

N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004).
[CrossRef]

Wang, C.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Wang, X. J.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

Wang, Z. L.

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

Xia, Z.

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Yan, B.

B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010).
[CrossRef] [PubMed]

Yang, F.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Yang, P.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

Yang, P. P.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

Young, R. A.

K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969).
[CrossRef]

Zavada, J. M.

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Zhang, J.

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

Zhang, X.

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

Zhu, H.

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Zhu, W.

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Zuev, M. G.

M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
[CrossRef]

Acta Crystallogr. B

K. Sudarsanan and R. A. Young, “Significant precision in crystal structural details. Holly springs hydroxyapatite,” Acta Crystallogr. B25(8), 1534–1543 (1969).
[CrossRef]

Chem. Mater.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting,” Chem. Mater.18(14), 3314–3322 (2006).
[CrossRef]

J. Alloy. Comp.

Z. L. Wang, H. B. Liang, M. L. Gong, and Q. Su, “Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure,” J. Alloy. Comp.432(1–2), 308–312 (2007).
[CrossRef]

J. Am. Ceram. Soc.

Y. Shen, A. Tok, and Z. Dong, “Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2,” J. Am. Ceram. Soc.93(4), 1176–1182 (2010).
[CrossRef]

J. Appl. Phys.

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+,” J. Appl. Phys.111(11), 113508 (2012).
[CrossRef]

D. R. Tallant, C. H. Seager, and R. L. Simpson, “Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons,” J. Appl. Phys.91(7), 4053–4064 (2002).
[CrossRef]

J. Electrochem. Soc.

M. Sato, T. Tanakasi, and M. Ohta, “Photostimulated luminescence and structural characterization of Ba5(PO4) 3Cl:Eu2 + phosphors,” J. Electrochem. Soc.141(7), 1851–1855 (1994).
[CrossRef]

J. Lumin.

R. El Ouenzerfi, N. Kbir-Ariguib, M. T. Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin.85(1–3), 71–77 (1999).
[CrossRef]

R. Ternane, M. T. Ayedi, N. K. Ariguib, and B. Piriou, “Luminescent properties of Eu3+ in calcium hydroxyapatite,” J. Lumin.81(3), 165–170 (1999).
[CrossRef]

X. Zhang, J. Zhang, J. Huang, X. Tang, and M. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED,” J. Lumin.130(4), 554–559 (2010).
[CrossRef]

J. Mater. Chem.

P. P. Yang, P. Yang, X. Teng, J. Lin, and L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlleddrug release,” J. Mater. Chem.21(14), 5505–5510 (2011).
[CrossRef]

J. Phys. Chem. C

A. Al-Kattan, P. Dufour, J. Dexpert-Ghys, and C. Drouet, “Preparation and physicochemical characteristics of luminescent apatite-based colloids,” J. Phys. Chem. C114(7), 2918–2924 (2010).
[CrossRef]

J. Phys. Chem. Solids

J. Rubio, “Doubly-divalent rare-earth ions in halide crystals,” J. Phys. Chem. Solids52(1), 101–174 (1991).
[CrossRef]

J. Phys. Condens. Matter

K. Marimuthu, L. C. Nehru, A. Mani, R. Ramesh, G. Muralidharan, and R. Jagannathan, “Apatites and britholites, are they akin - as probed by Eu3+ luminescence?” J. Phys. Condens. Matter13(3), 537–547 (2001).
[CrossRef]

R. Jagannathan and M. Kottaisamy, “Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-),” J. Phys. Condens. Matter7(44), 8453–8466 (1995).
[CrossRef]

J. Phys. D Appl. Phys.

M. Kottaisamy, R. Jagannathant, P. Jeyagopal, R. P. Rao, and R. L. Narayanan, “Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$,” J. Phys. D Appl. Phys.27(10), 2210–2215 (1994).
[CrossRef]

J. Solid State Chem.

N. Lakshminarasimhan and U. V. Varadaraju, “Eu3+ luminescence-a structural probe in BiCa4(PO4)3O, an apatite related phosphate,” J. Solid State Chem.177(10), 3536–3544 (2004).
[CrossRef]

M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, “Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals,” J. Solid State Chem.184(1), 52–58 (2011).
[CrossRef]

C. Wang, D. Gui, R. Qin, F. Yang, X. Jing, G. Tian, and W. Zhu, “Site and local structure of activator Eu2+ in phosphor Ca10−x(PO4)6Cl2:xEu2+,” J. Solid State Chem.206, 69–74 (2013).
[CrossRef]

Mater. Res. Bull.

G. F. Ju, Y. H. Hu, L. Chen, X. J. Wang, and Z. F. Mu, “Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu),” Mater. Res. Bull.48(7), 2598–2603 (2013).
[CrossRef]

H. Zhu, Z. Xia, H. Liu, R. Mi, and Z. Hui, “Luminescence properties and energy transfer of Bi3+/Eu3+-codoped Ca10(PO4)6F2 phosphors,” Mater. Res. Bull.48(9), 3513–3517 (2013).
[CrossRef]

Mater. Sci. Engineer. B

U. Hömmericha, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, “Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN,” Mater. Sci. Engineer. B105(1-3), 91–96 (2003).
[CrossRef]

Nanoscale Res. Lett.

B. Yan and L. L. Kong, “Binary and ternary heterometallic (La3+, Gd3+, Y3+)-Eu3+ functionalized SBA-15 mesoporous hybrids: chemically bonded assembly and photoluminescence,” Nanoscale Res. Lett.5(7), 1195–1203 (2010).
[CrossRef] [PubMed]

Phys. Lett. A

G. Blasse and A. Bril, “Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate,” Phys. Lett. A28(8), 572–573 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) XRD patterns of M2Y3[SiO4]3F:Eu (M = Sr, Ba) prepared in air atmosphere (labeled as A) and reducing atmosphere (labeled as R); the patterns were compared with the indexed PDF2 standard card No.15-0876 (Ca5(PO4)3F); (b) schematic view of crystal structure of Ba2Y3[SiO4]3F along c-direction.

Fig. 2
Fig. 2

(a) Emission spectra (λex = 390 nm) M2Y3[SiO4]3F:Eu3+ (M = Sr, Ba) prepared in air atmosphere ; inset is the luminescence decay curve of 5D07F2 transitions. The spectra of Ba-A and Sr-A are shown in the upper and lower parts, respectively. (b): CIE chromaticity coordinates of M2Y3[SiO4]3F:Eu (M = Sr, Ba) prepared in air atmosphere (-A) and in reducing atmosphere (-R).

Fig. 3
Fig. 3

(a): The emission spectra (λex = 390 nm) of M2Y3[SiO4]3F:Eu, M = Sr (a), M = Ba (b) prepared in reducing atmosphere. The emission bands were decomposed into two Gaussian components at Eu(I) and Eu(II), W and A denote FWHM and intensity, respectively.

Fig. 4
Fig. 4

The time resolved spectra of M2Y3[SiO4]3F:Eu, M = Sr (a), M = Ba (b) prepared in reducing atmosphere under excitation of 355 nm of a pulsed Nd:YAG laser with pulsed delay times of 100 μs, 3 μs, and 0.3 μs after the laser excitation.

Fig. 5
Fig. 5

the excitation spectra of Eu3+-doped M2Y3[SiO4]3F M = Sr (a), M = Ba (b) phosphors prepared in air atmosphere (-A) and in reducing atmosphere (-R).

Tables (1)

Tables Icon

Table 1 QE values of M2Y3[SiO4]3F:Eu (M = Sr, Ba) prepared in air atmosphere (A) and in reducing atmosphere (R)

Metrics