Abstract

We report on the preparation of thin As35S65 films from their amine based solutions by a spiral bar coating technique on flexible PET substrates and the direct writing of subwavelength surface corrugated gratings with a period of 350 nm into these films by excimer laser interference lithography. The structural and optical properties of bar coated As35S65 glass are investigated in detail and compared with those of samples fabricated by vacuum thermal evaporation. The polarization dependent spectral filtering properties of the guided mode resonance devices built by the waveguiding thin films and the surface relief gratings written by a single laser pulse are presented finally.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. F. Kokorina, Glasses for Infrared Optics (CRC, 1996).
  2. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater.4, 665–678 (2002).
  3. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003).
    [CrossRef]
  4. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000).
  5. Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).
  6. K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011).
  7. Y. Zha, M. Waldmann, and C. B. Arnold, “A review on solution processing of chalcogenide glasses for optical components,” Opt. Mater. Express3(9), 1259–1272 (2013).
    [CrossRef]
  8. A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
    [CrossRef]
  9. Y. Zha and C. B. Arnold, “Solution-processing of thick chalcogenide-chalcogenide and metal-chalcogenide structures by spin-coating and multilayer lamination,” Opt. Mater. Express3(2), 309–317 (2013).
    [CrossRef]
  10. J. Xu and R. M. Almeida, “Sol-gel derived germanium sulfide planar waveguides,” Mater. Sci. Semicond. Process.3(5-6), 339–344 (2000).
    [CrossRef]
  11. M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
    [CrossRef]
  12. E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
    [CrossRef]
  13. A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
    [CrossRef]
  14. J. C. Bailar, H. J. Emeléus, R. Nyholm, and A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry (Pergamon, 1973).
  15. S. H. Wemple and M. DiDomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B3(4), 1338–1351 (1971).
    [CrossRef]
  16. S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B7(8), 3767–3777 (1973).
    [CrossRef]
  17. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999).
    [CrossRef]
  18. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
    [CrossRef]
  19. J. M. González-Leal, R. Prieto-Alcón, J. A. Angel, D. A. Minkov, and E. Márquez, “Influence of substrate absorption on the optical and geometrical characterization of thin dielectric films,” Appl. Opt.41(34), 7300–7308 (2002).
    [CrossRef] [PubMed]
  20. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992).
    [CrossRef]
  21. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  22. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
    [CrossRef]
  23. A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensor. Actuator. B17(1), 35–40 (1993).
    [CrossRef]
  24. Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
    [CrossRef] [PubMed]

2013 (3)

2012 (1)

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

2009 (2)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

2008 (1)

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

2004 (1)

A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
[CrossRef]

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003).
[CrossRef]

2002 (2)

2000 (1)

J. Xu and R. M. Almeida, “Sol-gel derived germanium sulfide planar waveguides,” Mater. Sci. Semicond. Process.3(5-6), 339–344 (2000).
[CrossRef]

1999 (1)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999).
[CrossRef]

1993 (2)

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensor. Actuator. B17(1), 35–40 (1993).
[CrossRef]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992).
[CrossRef]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

1973 (1)

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B7(8), 3767–3777 (1973).
[CrossRef]

1971 (1)

S. H. Wemple and M. DiDomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B3(4), 1338–1351 (1971).
[CrossRef]

Aggarwal, I. D.

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater.4, 665–678 (2002).

Almeida, R. M.

J. Xu and R. M. Almeida, “Sol-gel derived germanium sulfide planar waveguides,” Mater. Sci. Semicond. Process.3(5-6), 339–344 (2000).
[CrossRef]

Angel, J. A.

Arnold, C. B.

Bartelt, H.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

Becker, M.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

Brandenburg, A.

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensor. Actuator. B17(1), 35–40 (1993).
[CrossRef]

Brueckner, S.

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Chase, C.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Curry, R. J.

A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
[CrossRef]

DiDomenico, M.

S. H. Wemple and M. DiDomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B3(4), 1338–1351 (1971).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003).
[CrossRef]

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999).
[CrossRef]

Fehling, S.

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

Fiserova, A.

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

Golovchak, R.

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

Gombert, A.

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensor. Actuator. B17(1), 35–40 (1993).
[CrossRef]

González-Leal, J. M.

Hewak, D. W.

A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Huang, Y.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Jain, H.

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

Karagodsky, V.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Kovalskiy, A.

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

Lindner, E.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

Magnusson, R.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992).
[CrossRef]

Mairaj, A. K.

A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
[CrossRef]

Márquez, E.

Mei, T.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Minkov, D. A.

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Palka, K.

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Petkov, K.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999).
[CrossRef]

Prieto-Alcón, R.

Rothhardt, M.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

Sanghera, J. S.

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater.4, 665–678 (2002).

Schroeter, S.

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

Tao, C.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Vlcek, M.

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

Waldmann, M.

Wang, Q.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992).
[CrossRef]

Wemple, S. H.

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B7(8), 3767–3777 (1973).
[CrossRef]

S. H. Wemple and M. DiDomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B3(4), 1338–1351 (1971).
[CrossRef]

Xu, J.

J. Xu and R. M. Almeida, “Sol-gel derived germanium sulfide planar waveguides,” Mater. Sci. Semicond. Process.3(5-6), 339–344 (2000).
[CrossRef]

Yang, H.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003).
[CrossRef]

Zha, Y.

Zhang, D.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

Zhuang, S.

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992).
[CrossRef]

Electron. Lett. (1)

A. K. Mairaj, R. J. Curry, and D. W. Hewak, “Chalcogenide glass thin films through inverted deposition and high velocity spinning,” Electron. Lett.40(7), 421–422 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, and A. Fiserova, “Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography,” J. Mater. Sci. Mater. Electron.20(S1), 290–293 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids249(2-3), 150–159 (1999).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1–3), 1–12 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater.4, 665–678 (2002).

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

J. Xu and R. M. Almeida, “Sol-gel derived germanium sulfide planar waveguides,” Mater. Sci. Semicond. Process.3(5-6), 339–344 (2000).
[CrossRef]

Opt. Commun. (1)

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008).
[CrossRef]

Opt. Mater. Express (2)

Phys. Rev. B (2)

S. H. Wemple and M. DiDomenico, “Behavior of electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B3(4), 1338–1351 (1971).
[CrossRef]

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B7(8), 3767–3777 (1973).
[CrossRef]

Physics Procedia (1)

A. Kovalskiy, M. Vlcek, K. Palka, R. Golovchak, and H. Jain, “Wavelength dependence of photostructural transformations in As2S3 thin films,” Physics Procedia44, 75–81 (2013).
[CrossRef]

Sensor. Actuator. B (1)

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensor. Actuator. B17(1), 35–40 (1993).
[CrossRef]

Sensors (Basel) (1)

Q. Wang, D. Zhang, H. Yang, C. Tao, Y. Huang, S. Zhuang, and T. Mei, “Sensitivity of a label-free guided-mode resonant optical biosensor with different modes,” Sensors (Basel)12(12), 9791–9799 (2012).
[CrossRef] [PubMed]

Other (5)

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University, 2000).

Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).

K. Tanaka and K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2011).

J. C. Bailar, H. J. Emeléus, R. Nyholm, and A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry (Pergamon, 1973).

V. F. Kokorina, Glasses for Infrared Optics (CRC, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

AFM scan of VTE TF (a), bare PET substrate (b), and SCB TF (c) deposited on the PET substrate.

Fig. 2
Fig. 2

Raman spectra of source bulk sample, VTE and SBC TFs.

Fig. 3
Fig. 3

Models of As4S3 (a) and As4S4 (b) structures.

Fig. 4
Fig. 4

Model of partially opened As4S4 cluster.

Fig. 5
Fig. 5

Raman spectra of pure propylamine (PA), SBC and VTE TFs.

Fig. 6
Fig. 6

AFM scans and average profiles of diffraction gratings written into VTE (A) and SCB TF (B) by 1 laser pulse.

Fig. 7
Fig. 7

The groove quality analysis from the borders of the grooves in a half of diffraction grating’s height for VTE (A) and SBC TF (B) written by 1 laser pulse.

Fig. 8
Fig. 8

Depth dependence of the intensity of 248 nm exposure beam in VTE As35S65.

Fig. 9
Fig. 9

Depth dependences of diffraction gratings written in VTE and SBC TFs on the number of exposure pulses.

Fig. 10
Fig. 10

Transmission spectra of the bare PET substrate (1) and the As35S65 TFs prepared by VTE (2) and SBC (3)

Fig. 11
Fig. 11

Measured transmission spectra of the bare PET substrate (1), the As35S65 TF prepared by VTE (2) on the substrate and spectra calculated for a layer thickness of 220 nm (3), 230 nm (4), and 240 nm (5)

Fig. 12
Fig. 12

Refractive indices of As35S65 TFs prepared by VTE (1) and SBC (2)

Fig. 13
Fig. 13

Polarization dependent transmission spectra of a grating written by one laser pulse into a VTE TF of As35S65 with a thickness of 232 nm.

Fig. 14
Fig. 14

Polarization dependent transmission spectra of a grating written by one laser pulse into a SBC As35S65 TF with a thickness of 748 nm.

Fig. 15
Fig. 15

Angle dependent transmission (T) and reflection (R) of the grating written by one laser pulse into the 232 nm thick As35S65 TF prepared by VTE on a PET substrate for a 594 nm laser probe beam and TM polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n PET fit =1.5989+ 14601 λ 2   nm 2
n As 35 S 65 2 =1+ E d E 0 E 0 2 E 2

Metrics