Abstract

We study the photoinduced deposition of Ag nanoparticles on Fe-doped LiNbO3 crystals by using an in situ probe. SEM and XPS analysis show that Ag metallic nanoparticles are close-packedly deposited on the crystal surface. Both 405 and 532nm laser are found effective for the photo-induced Ag deposition. The Ag deposition on the y-surface shows obvious anisotropy as compared to that on the + z-surface. Moreover, the Ag deposition on the + z-surface is found to start easily surrounding the focal point of the laser rather than at its center. Both photogalvanic and diffusion effects of photo-excited electrons are suggested to account for these features.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
    [CrossRef]
  2. E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
    [CrossRef]
  3. N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
    [CrossRef] [PubMed]
  4. N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
    [CrossRef] [PubMed]
  5. J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
    [CrossRef]
  6. Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
    [CrossRef]
  7. Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
    [CrossRef]
  8. L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
    [CrossRef]
  9. X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
    [CrossRef]
  10. X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
    [CrossRef]
  11. S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
    [CrossRef]
  12. S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
    [CrossRef]
  13. G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
    [CrossRef]
  14. H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
    [CrossRef]
  15. W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
    [CrossRef]
  16. X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
    [CrossRef]
  17. S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
    [CrossRef] [PubMed]

2013 (1)

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

2012 (1)

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

2011 (4)

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

2010 (1)

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

2008 (2)

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

2007 (1)

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

2006 (2)

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

2004 (2)

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

1975 (1)

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

1973 (1)

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Balobaid, L.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Bjerneld, E. J.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Callo, K.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Carville, N.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Carville, N. C.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Castiella, M.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Collins, L.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Damm, S.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Denning, D.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Dischler, B.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Dunn, S.

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

Eller, B. S.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Enzell, C. R.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Fäll, M.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Gallo, K.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Gonser, U.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Gruverman, A.

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Habicht, S.

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

Hanson, J. N.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

Hatano, H.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

Hüfner, S.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Johansson, P.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Kitamura, K.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Krätzia, E.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Lendl, B.

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Leopold, N.

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Lindström, B.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Liu, X.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Manzo, M.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Nemanich, R. J.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Ohashi, N.

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

Ohuchi, F.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

Räuber, A.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Rice, J. H.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Rodriguez, B.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Rodriguez, B. J.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Schön, G.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Souza, N.

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Sun, Y.

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Svedberg, F.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Swahn, C.-G.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Takekawa, S.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

Terabe, K.

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Tiwari, D.

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

Tummavuori, J.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Weber, S. A.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Wernick, J.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Wertheim, G.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Yang, W. C.

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

ACS Nano (1)

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Acta Chem. Scand. (1)

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Anal. Bioanal. Chem. (1)

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Appl. Phys. (Berl.) (1)

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Appl. Phys. Lett. (6)

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

J. Phys. Chem. A (1)

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Nanotechnology (2)

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

Nat. Methods (1)

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Solid State Commun. (1)

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Typical absorption spectrum of Fe-doped LN sample and b) experimental scheme of photoinduced deposition (PID) of silver (Ag) nanoparticles (NPs).

Fig. 2
Fig. 2

Topographic images of the deposition product with different magnification: (a) 50 × , (b) 200 × (optical microscope) and (c) 100k × (SEM); (d) High-resolution XPS spectra of the deposition product.

Fig. 3
Fig. 3

a) Microscope image of 532nm-laser induced Ag deposition on the + z-surface of Fe-doped LN, region “a” and “b” are produced with the focal intensities of 2.8 × 106 and 5.6 × 106 mW/cm2, respectively. b) Microscope images of 532nm-laser induced Ag deposition on the y-surface of Fe-doped LN, and the green circle denotes the position of laser focus.

Fig. 4
Fig. 4

Dynamic process of the photoinduced deposition (PID) of silver (Ag) nanoparticles (NPs) on Fe-doped LN. Six images were taken at different time [(a) 30 s, (b) 3 min, (c) 7 min, (d) 9 min 42 s, (e) 9 min 42.5 s (f) 9 min 43 s] after the 405-nm-laser exposure.

Fig. 5
Fig. 5

Mechanism of photoinduced deposition of Ag Nps on a) the + z-surface and b) the y-surface of Fe-doped LN.

Metrics