Abstract

We study the photoinduced deposition of Ag nanoparticles on Fe-doped LiNbO3 crystals by using an in situ probe. SEM and XPS analysis show that Ag metallic nanoparticles are close-packedly deposited on the crystal surface. Both 405 and 532nm laser are found effective for the photo-induced Ag deposition. The Ag deposition on the y-surface shows obvious anisotropy as compared to that on the + z-surface. Moreover, the Ag deposition on the + z-surface is found to start easily surrounding the focal point of the laser rather than at its center. Both photogalvanic and diffusion effects of photo-excited electrons are suggested to account for these features.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
    [CrossRef]
  2. E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
    [CrossRef]
  3. N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
    [CrossRef] [PubMed]
  4. N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
    [CrossRef] [PubMed]
  5. J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
    [CrossRef]
  6. Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
    [CrossRef]
  7. Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
    [CrossRef]
  8. L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
    [CrossRef]
  9. X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
    [CrossRef]
  10. X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
    [CrossRef]
  11. S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
    [CrossRef]
  12. S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
    [CrossRef]
  13. G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
    [CrossRef]
  14. H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
    [CrossRef]
  15. W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
    [CrossRef]
  16. X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
    [CrossRef]
  17. S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
    [CrossRef] [PubMed]

2013

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

2012

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

2011

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

2010

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

2008

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

2007

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

2006

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

2004

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

1977

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

1975

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

1973

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Balobaid, L.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Bjerneld, E. J.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Callo, K.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Carville, N.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Carville, N. C.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Castiella, M.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Collins, L.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Damm, S.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Denning, D.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Dischler, B.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Dunn, S.

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

Eller, B. S.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Enzell, C. R.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Fäll, M.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Gallo, K.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Gonser, U.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Gruverman, A.

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Habicht, S.

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

Hanson, J. N.

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

Hatano, H.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

Hüfner, S.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Johansson, P.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Kitamura, K.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Krätzia, E.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Lendl, B.

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Leopold, N.

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Lindström, B.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Liu, X.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Manzo, M.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Nemanich, R. J.

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Ohashi, N.

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

Ohuchi, F.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

Räuber, A.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Rice, J. H.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Rodriguez, B.

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

Rodriguez, B. J.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

Schön, G.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Souza, N.

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Sun, Y.

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

Svedberg, F.

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Swahn, C.-G.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Takekawa, S.

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

Terabe, K.

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

Tiwari, D.

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

Tummavuori, J.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Weber, S. A.

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Wernick, J.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Wertheim, G.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Yang, W. C.

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

ACS Nano

N. C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S. A. Weber, K. Gallo, J. H. Rice, and B. J. Rodriguez, “Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals,” ACS Nano6(8), 7373–7380 (2012).
[CrossRef] [PubMed]

Acta Chem. Scand.

G. Schön, J. Tummavuori, B. Lindström, C. R. Enzell, C. R. Enzell, and C.-G. Swahn, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand.27, 2623–2633 (1973).
[CrossRef]

Anal. Bioanal. Chem.

N. Leopold and B. Lendl, “On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis,” Anal. Bioanal. Chem.396(6), 2341–2348 (2010).
[CrossRef] [PubMed]

Appl. Phys. (Berl.)

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. (Berl.)12(4), 355–368 (1977).
[CrossRef]

Appl. Phys. Lett.

W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, “Polarization-dependent electron affinity of LiNbO3 surfaces,” Appl. Phys. Lett.85(12), 2316 (2004).
[CrossRef]

X. Liu, K. Kitamura, and K. Terabe, “Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy,” Appl. Phys. Lett.89(13), 132905 (2006).
[CrossRef]

L. Balobaid, N. Carville, M. Manzo, K. Callo, and B. Rodriguez, “Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates,” Appl. Phys. Lett.102(4), 042908 (2013).
[CrossRef]

X. Liu, K. Kitamura, K. Terabe, H. Hatano, and N. Ohashi, “Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect,” Appl. Phys. Lett.91(4), 044101 (2007).
[CrossRef]

X. Liu, H. Hatano, S. Takekawa, F. Ohuchi, and K. Kitamura, “Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals,” Appl. Phys. Lett.99(5), 053102 (2011).
[CrossRef]

S. Dunn and D. Tiwari, “Influence of ferroelectricity on the photoelectric effect of LiNbO3,” Appl. Phys. Lett.93(9), 092905 (2008).
[CrossRef]

J. Appl. Phys.

Y. Sun and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: wavelength and polarization screening dependence,” J. Appl. Phys.109(10), 104302 (2011).
[CrossRef]

Y. Sun, B. S. Eller, and R. J. Nemanich, “Photoinduced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence,” J. Appl. Phys.110(8), 084303 (2011).
[CrossRef]

J. Phys. Chem. A

E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Fäll, “Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids,” J. Phys. Chem. A108(19), 4187–4193 (2004).
[CrossRef]

Nanotechnology

J. N. Hanson, B. J. Rodriguez, R. J. Nemanich, and A. Gruverman, “Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction,” Nanotechnology17(19), 4946–4949 (2006).
[CrossRef]

S. Habicht, R. J. Nemanich, and A. Gruverman, “Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects,” Nanotechnology19(49), 495303 (2008).
[CrossRef] [PubMed]

Nat. Methods

N. Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Solid State Commun.

S. Hüfner, G. Wertheim, and J. Wernick, “XPS core line asymmetries in metals,” Solid State Commun.17(4), 417–422 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Typical absorption spectrum of Fe-doped LN sample and b) experimental scheme of photoinduced deposition (PID) of silver (Ag) nanoparticles (NPs).

Fig. 2
Fig. 2

Topographic images of the deposition product with different magnification: (a) 50 × , (b) 200 × (optical microscope) and (c) 100k × (SEM); (d) High-resolution XPS spectra of the deposition product.

Fig. 3
Fig. 3

a) Microscope image of 532nm-laser induced Ag deposition on the + z-surface of Fe-doped LN, region “a” and “b” are produced with the focal intensities of 2.8 × 106 and 5.6 × 106 mW/cm2, respectively. b) Microscope images of 532nm-laser induced Ag deposition on the y-surface of Fe-doped LN, and the green circle denotes the position of laser focus.

Fig. 4
Fig. 4

Dynamic process of the photoinduced deposition (PID) of silver (Ag) nanoparticles (NPs) on Fe-doped LN. Six images were taken at different time [(a) 30 s, (b) 3 min, (c) 7 min, (d) 9 min 42 s, (e) 9 min 42.5 s (f) 9 min 43 s] after the 405-nm-laser exposure.

Fig. 5
Fig. 5

Mechanism of photoinduced deposition of Ag Nps on a) the + z-surface and b) the y-surface of Fe-doped LN.

Metrics