Abstract

Rare Earth doped YAG crystals with controlled variable doping, are laser gain materials recently attracting much attention due to the unique properties it offer in terms of laser engineering. It is very important to perform an accurate and reliable doping spatial distribution measurement in order to be capable to fully map the doping values in the obtained material. We therefore cross-evaluated most common methods. We also mapped doping distribution in a Bagdasarov grown Yb:YAG crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
    [CrossRef]
  2. M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express 2(1), 20–30 (2012).
    [CrossRef]
  3. M. Arzakantsyan, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method,” Opt. Mater. Express 2(9), 1219–1225 (2012).
    [CrossRef]
  4. X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
    [CrossRef]
  5. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
    [CrossRef] [PubMed]
  6. V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
    [CrossRef]
  7. G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
    [CrossRef]
  8. X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
    [CrossRef]
  9. H. Jurgen, Mass Spectroscopy, Second Edition (Springer, 2011).
  10. X-Ray Spectrometry in Electron Beam Instruments, D. B. Williams, J. I. Goldstein, D.E. Newbury, Eds. (Springer Science + Business Media, 1995).
  11. M. Mayer, “Rutherford back scattering spectrometry,” Lectures given at the Workshop on Nuclear Data for Science and Technology: Materials Analysis, Trieste, Italy, 19–30 May 2003.
  12. G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
    [CrossRef]
  13. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
    [CrossRef]
  14. C. J. Rhodes, Electron Spin Resonance Spectroscopy, Principles and Instrumentation in Encyclopaedia of Analytical Science (Elsevier, 2004), p. 332.
  15. HiPER, www.hiper-laser.org

2013 (1)

2012 (2)

2011 (1)

M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[CrossRef]

2003 (4)

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

2000 (2)

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Albach, D.

Ananyan, N.

Arzakantsyan, M.

Basun, S. A.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Boulon, G.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

Chani, V. I.

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Chanteloup, J.-C.

Cohen-Adad, M. T.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

Deng, P.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

Fornasiero, L.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Fukuda, T.

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Gevorgyan, V.

Gonçalvès-Novo, T.

Goutaudier, C.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

Guyot, Y.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

Hasegawa, K.

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Huber, G.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Kuwano, Y.

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Laversenne, L.

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

Mix, E.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Petermann, K.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Peters, V.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Si, J.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

Song, H.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

Song, P. X.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

Vincent, B.

Xu, J.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

Xu, X.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

Yoshikawa, A.

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

Zhao, G.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

Zhao, Z.

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

Zhou, Y.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

J. Cryst. Growth (5)

M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth 329(1), 39–43 (2011).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

V. I. Chani, A. Yoshikawa, Y. Kuwano, K. Hasegawa, and T. Fukuda, “Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique,” J. Cryst. Growth 212(3–4), 469–475 (2000).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, and Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252(1–3), 355–359 (2003).
[CrossRef]

X. Xu, Z. Zhao, G. Zhao, P. X. Song, J. Xu, and P. Deng, “Comparison of Yb:YAG crystals grown by CZ and TGT method,” J. Cryst. Growth 257(3–4), 297–300 (2003).
[CrossRef]

J. Lumin. (2)

G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin. 102–103, 417–425 (2003).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare- earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (2)

Other (5)

H. Jurgen, Mass Spectroscopy, Second Edition (Springer, 2011).

X-Ray Spectrometry in Electron Beam Instruments, D. B. Williams, J. I. Goldstein, D.E. Newbury, Eds. (Springer Science + Business Media, 1995).

M. Mayer, “Rutherford back scattering spectrometry,” Lectures given at the Workshop on Nuclear Data for Science and Technology: Materials Analysis, Trieste, Italy, 19–30 May 2003.

C. J. Rhodes, Electron Spin Resonance Spectroscopy, Principles and Instrumentation in Encyclopaedia of Analytical Science (Elsevier, 2004), p. 332.

HiPER, www.hiper-laser.org

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

RBS spectrum for Yb:YAG samples with 2 at% and 20 at% doping levels. The curve is the simulated RBS spectrum for 2 at% Yb doped YAG sample. Only the first two right steps (associated with Y and Yb presence) are of interest for us.

Fig. 2
Fig. 2

Most common orientations for crystallization front during a Bagdasarov growth: top view (a and b), and side view (c and d).

Fig. 3
Fig. 3

Picture (a) and schematic representation (b) of the extracted sample. Colored arrows indicate lines along which measurements were performed. The coordinate system is equivalent to the one presented on the Fig. 2

Fig. 4
Fig. 4

a.Yb doping distribution alongside X (green) and Y (magenta) axes. The doping level is quite homogeneous in Y direction and was recorded approximately at x = 5 mm, i.e. the middle of the sample. b. Right pictures illustrate the visualization of growth front curvature on a Bagdasarov grown boule.

Fig. 5
Fig. 5

(a) doping distribution alongside Z1 (red) and Z2 (blue) axes. The variation of doping level clearly refers to the inclination of growth front. The starting values are in a good accordance with the data measured along X axis. (b) doping distribution map in the Oxz plane.

Tables (1)

Tables Icon

Table 1 Trivalent Yb doping level in two YAG samples measured with different techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A( x,z )=( 2.88 10 4 x6.43 10 2 )z0.12x+3.76

Metrics