Abstract

Scanning micro-Raman spectroscopy has been utilized to image and investigate strain in He+-implanted congruent LiNbO3 samples. By using abruptly patterned implanted samples, we show that the spatial two-dimensional mapping of the Raman spectral peaks can be used to image the strain distribution and determine its absolute magnitude. We demonstrate that both short- and long-range length-scale in-plane and out-of-plane strain and stress states can be determined using the secular equations of phonon-deformation-potential theory. We also show that two-dimensional Raman imaging can be used to visualize the relaxation of strain in the crystal during low-temperature annealing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University, 2001).
  2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  3. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
    [CrossRef]
  4. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
    [CrossRef]
  5. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
    [CrossRef]
  6. F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
    [CrossRef]
  7. A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
    [CrossRef]
  8. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
    [CrossRef]
  9. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
    [CrossRef]
  10. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  11. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
    [CrossRef]
  12. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
    [CrossRef]
  13. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
    [CrossRef] [PubMed]
  14. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
    [CrossRef]
  15. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
    [CrossRef]
  16. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
    [CrossRef]
  17. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express19(15), 13934–13939 (2011).
    [CrossRef] [PubMed]
  18. M. Quintanilla, E. M. Rodríguez, E. Cantelar, F. Cussó, and C. Domingo, “Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3.,” Opt. Express18(6), 5449–5458 (2010).
    [CrossRef] [PubMed]
  19. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
    [CrossRef]
  20. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
    [CrossRef]
  21. D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
    [CrossRef]
  22. J. Ziegler, 2008, http://www.srim.org .
  23. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  24. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002).
  25. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
    [CrossRef]
  26. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
    [CrossRef]
  27. V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
    [CrossRef]
  28. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
    [CrossRef]
  29. B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
    [CrossRef]
  30. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
    [CrossRef]
  31. D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
    [CrossRef]
  32. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
    [CrossRef]
  33. G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
    [CrossRef]
  34. R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys.25(7), 1091–1095 (1992).
    [CrossRef]
  35. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
    [CrossRef]
  36. A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
    [CrossRef]
  37. D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
    [CrossRef]
  38. M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
    [CrossRef]

2013 (2)

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
[CrossRef]

G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
[CrossRef]

2012 (2)

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
[CrossRef]

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

M. Quintanilla, E. M. Rodríguez, E. Cantelar, F. Cussó, and C. Domingo, “Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3.,” Opt. Express18(6), 5449–5458 (2010).
[CrossRef] [PubMed]

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

2009 (2)

D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
[CrossRef]

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

2008 (2)

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

2007 (7)

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

2006 (1)

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

2005 (1)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

2004 (2)

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

2002 (1)

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

2001 (1)

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

2000 (3)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
[CrossRef]

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
[CrossRef]

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

1999 (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

1996 (3)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
[CrossRef]

1992 (1)

R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys.25(7), 1091–1095 (1992).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

Agulló-Rueda, F.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

Althouse, C.

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Amaral, L.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Arias, T. A.

D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
[CrossRef]

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Bakhru, H.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Bakhru, S.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Bennani, F.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Boatner, L. A.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

Borstel, G.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
[CrossRef]

Bourson, P.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Caciuc, V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
[CrossRef]

Cantelar, E.

Capek, P.

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Carpenter, M. A.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Carrascosa, M.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

Chen, F.

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express19(15), 13934–13939 (2011).
[CrossRef] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Chen, L.-Q.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Cussó, F.

da Silva, M. F.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Dadap, J. I.

Damie, R. V.

R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys.25(7), 1091–1095 (1992).
[CrossRef]

de Andrés, A.

A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
[CrossRef]

de Bernabé, A.

A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
[CrossRef]

De Wolf, I.

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Dierolf, V.

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Djukic, D.

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Domingo, C.

Dong, N.

Eason, R. W.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

Eom, C.-B.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Evans-Lutterodt, K.

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Ewing, R. C.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

Fichtner, P. F. P.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Fontana, M. D.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Freedman, D. A.

D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
[CrossRef]

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Gaathon, O.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

Gischkat, Th.

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

Gopolan, V.

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Hagihara, H.

G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
[CrossRef]

Hartung, H.

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

Herman, I. P.

Herman, P.

Howard, C. J.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Huang, H.-C.

Husson, E.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Jaque, D.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
[CrossRef]

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express19(15), 13934–13939 (2011).
[CrossRef] [PubMed]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Kennedy, B. J.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Kley, E. B.

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

Kling, A.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Knight, K. S.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Konstantinov, L.

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Kuznetsov, D. K.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Lu, Q.

Mailis, S.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

McKnight, R. E. A.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Meldrum, A.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Mihailova, B.

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

Nejadmalayeri, A. H.

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Ofan, A.

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Olivares, J.

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

Osgood, R. M.

H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, S. Bakhru, and H. Bakhru, “A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3,” Opt. Mater. Express3(2), 126–142 (2013).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Pezzotti, G.

G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Postnikov, A. V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
[CrossRef]

Prieto, C.

A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
[CrossRef]

Proust, C.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

Quintanilla, M.

Rabe, K. M.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
[CrossRef]

Repelin, Y.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Ródenas, A.

Rodríguez, E. M.

Roth, R. M.

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Roundy, D.

D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Savatinova, I.

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

Savova, I.

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

Schlom, D. G.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Schrempel, F.

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

Scott, J. G.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Shur, V. Y.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Soares, J. C.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Sones, C. L.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

Stone, G.

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Streiffer, S. K.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Tejerina, M. R.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
[CrossRef]

Torchia, G. A.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
[CrossRef]

Triscone, J.-M.

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Wang, K.-M.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Wang, X.-L.

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Weber, W. J.

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

Welch, D.

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Wesch, W.

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Zawislak, F.

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Zelenovskiy, P. S.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Zhang, L.

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Zhou, Q.

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Zhu, W.

G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
[CrossRef]

Zhu, Y.

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

Zolotoyabko, E.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Annu. Rev. Mater. Res. (1)

D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res.37(1), 589–626 (2007).
[CrossRef]

Appl. Phys. A: Mater. (1)

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater.79(3), 691–696 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett.92(16), 161908 (2008).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett.87(24), 241101 (2005).
[CrossRef]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998).
[CrossRef]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407 (2000).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

D. Djukic, R. M. Roth, R. M. Osgood, K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He+ implanted single-cyrstal LiNbO3,” Appl. Phys. Lett.91(11), 112908 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

J. Appl. Phys. (3)

J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys.101(3), 033512 (2007).
[CrossRef]

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys.112(12), 123108 (2012).
[CrossRef]

A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys.79(1), 143 (1996).
[CrossRef]

J. Nucl. Mater. (1)

A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater.300(2-3), 242–254 (2002).
[CrossRef]

J. Phys. Chem. Solids (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids60(6), 819–825 (1999).
[CrossRef]

J. Phys. D Appl. Phys. (2)

G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys.46(14), 145103 (2013).
[CrossRef]

R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys.25(7), 1091–1095 (1992).
[CrossRef]

Mater. Lett. (1)

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996).
[CrossRef]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B250(1–2), 164–168 (2006).
[CrossRef]

A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B175–177(0), 394–397 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B (4)

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B61(13), 8806–8813 (2000).
[CrossRef]

A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010).
[CrossRef]

D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B80(6), 064108 (2009).
[CrossRef]

M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B80(21), 214101 (2009).
[CrossRef]

Phys. Status Solidi C (2)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004).
[CrossRef]

P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C4(3), 830–833 (2007).
[CrossRef]

Semicond. Sci. Technol. (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996).
[CrossRef]

Solid State Commun. (1)

B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun.116(1), 11–15 (2000).
[CrossRef]

Other (4)

J. Ziegler, 2008, http://www.srim.org .

I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002).

M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Examples of Raman spectra obtained at different probing locations: near-surface (black, labeled A in inset sketch), stopping range (red, labeled H), and deeper in the unimplanted crystal (blue, labeled L). A decrease of phonon modal signal is clearly seen in the irradiated regions. Peak shifts for A1(TO1) at 254 cm−1 and A1(TO4) at 631 cm−1 modes are indicated by dashed lines. Inset: sketch of micro-Raman edge-probing geometry. Capital letters on the sample sketch indicate specific scan positions. He+ stopping range is ~10 μm below the surface. (b) Peak shift as a function of probing distance; the maximum is observed at the He+ stopping range. Inset: peak position and linewidth as a function of the probing distance; blue dotted curve is SRIM-simulated defect distribution. Peak fits using a Lorentzian function, exhibit a total redshift of ~8 cm−1 (c) Upon annealing, crystal defects are “healed” and the elastic strain relieved (see inset) for 600°C annealing for ~10 hours.

Fig. 2
Fig. 2

Two-dimensional (2D) Raman mapping on a patterned-implanted sample: (a) High-contrast imaging of peak positions of the A1(TO4) mode between implanted (I) and unimplanted (II) regions. (b) 250-nm-step imaging at implantation interface (white outline in (a)). Yellow arrow indicates plane of largest redshift (coincident with the ion stopping range). Extended “wing” at the implantation edge (marked with white fitted curve). (c) Corresponding optical cross section of this same region, blue outline indicates imaged region in (b); red arrow indicates location of stopping range. (d) 1-μm-step line scan, taken at the depth corresponding to the ion stopping range, across two implanted regions showing the extent of the long-range strain field; blue dashed lines indicate locations of interfaces. A change in peak positions occurs across the implanted region. An apparent L ~30 μm length scale for strain relaxation is seen for the ~631 cm−1 A1(TO4) mode.

Fig. 3
Fig. 3

2D Raman mapping of the evolution of damage after annealing for 30 minutes at different temperatures. Panels (a,d), (b,e), and (c,f) are Raman images of as-implanted, 250°C-annealed, and 600°C-annealed samples, respectively, using the 631 cm−1 active mode (top panels) and 875 cm−1 forbidden mode (bottom panels) Raman signals, with arrows indicating the stopping range. For the active (forbidden) mode, the brightest signal indicates high (low) degree of crystallinity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S zz = C 13 ( ε xx + ε yy )+ C 33 ε zz =7-13 GPa
S xx + S yy =( C 11 + C 12 )( ε xx + ε yy )+2 C 13 ε zz =3-8 GPa

Metrics