Abstract

We demonstrate that blending of TiO2 nanoparticles into nanoimprint polymer resist yields a composite material with an increased optical refractive index suitable for nanoimprint lithography. Complex refractive indices of n400nm = 1.94-i0.009, n500nm = 1.86-i0.003, and n600nm = 1.83-i0.002 are predicted for composite materials with 30% TiO2 nanoparticles of 35-nm diameter in Amonil UV nanoimprint resist. Layers with concentrations of 1 to 30 volume% of TiO2 nanoparticles blended into the composite resist material are prepared by spin-coating. Good agreement between measured and predicted optical properties is obtained. Using the composite imprint resist periodic linear gratings with periods of 370 nm are fabricated on glass substrates using UV nanoimprint lithography. Subsequently, an organic light emitting diode (OLED) is fabricated on top of the grating. Due to the high-index grating structure, waveguide modes are extracted from the OLED, which are observed in the OLED emission spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
    [CrossRef]
  2. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
    [CrossRef]
  3. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
    [CrossRef]
  4. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
    [CrossRef]
  5. B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
    [CrossRef]
  6. W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
    [CrossRef]
  7. C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009).
    [CrossRef]
  8. J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
    [CrossRef]
  9. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.26, 458–480 (2008).
  10. K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
    [CrossRef]
  11. Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
    [CrossRef]
  12. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
    [CrossRef]
  13. C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001).
    [CrossRef]
  14. B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013).
    [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 2008).
  16. A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
    [CrossRef]
  17. P. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt.42(3), 436–444 (2003).
    [CrossRef] [PubMed]
  18. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
    [CrossRef]
  19. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
    [CrossRef]
  20. U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
    [CrossRef]

2013

B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013).
[CrossRef]

2010

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

2009

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
[CrossRef]

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009).
[CrossRef]

K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
[CrossRef]

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

2008

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.26, 458–480 (2008).

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

2006

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

2005

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
[CrossRef]

2004

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

2003

P. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt.42(3), 436–444 (2003).
[CrossRef] [PubMed]

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

2002

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
[CrossRef]

2001

C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001).
[CrossRef]

1983

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

Ando, S.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Asano, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Bae, B.-S.

W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
[CrossRef]

Bender, M.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Chang, C. C.

C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001).
[CrossRef]

Chen, W. C.

C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001).
[CrossRef]

Cox, A. J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
[CrossRef]

DeWeerd, A. J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
[CrossRef]

Do, Y. R.

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

Fuchs, A.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Fujita, M.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Gerken, M.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Geyer, U.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Gleiss, S.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Glinsner, T.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Guetlein, J.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

Hakuta, Y.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Hauss, J.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Hayashi, H.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Imai, Y.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Ishihara, K.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Jain, V. K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
[CrossRef]

Jin, P.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Kaneko, K.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Kim, W.-S.

W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
[CrossRef]

Kim, Y.-C.

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

Kurz, H.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Laven, P.

Lee, Y.-H.

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

Lemmer, U.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Li, M.

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Li, P.-S.

B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013).
[CrossRef]

Linden, J.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
[CrossRef]

Liu, B.-T.

B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013).
[CrossRef]

Liu, J.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Liu, Y.

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Lü, C.

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009).
[CrossRef]

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Luo, K.

K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
[CrossRef]

Matsui, K.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Mehta, D. S.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
[CrossRef]

Miao, L.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Nabatova-Gabain, N.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Nakada, H.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Nakamura, Y.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Noda, S.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Ogura, T.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Ohata, H.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Plachetka, U.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Riedel, B.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Saxena, K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
[CrossRef]

Schift, H.

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.26, 458–480 (2008).

Shibasaki, Y.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Shimoji, N.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Song, Y.-W.

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

Tanemura, S.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Terahara, A.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Terai, A.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Tsuji, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Ueda, M.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Ueno, N.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

Ueno, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Wahlbrink, T.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Wu, L.

K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
[CrossRef]

Yang, B.

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009).
[CrossRef]

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Yoon, K. B.

W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
[CrossRef]

Zhang, L.

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Zhou, S.

K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
[CrossRef]

Am. J. Phys.

A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010).
[CrossRef]

Appl. Surf. Sci.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003).
[CrossRef]

Chem. Mater.

J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp.

Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008).
[CrossRef]

Eur. Polym. J.

Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009).
[CrossRef]

J. Appl. Phys.

U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008).
[CrossRef]

Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004).
[CrossRef]

J. Mater. Chem.

W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005).
[CrossRef]

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009).
[CrossRef]

J. Phys. E Sci. Instrum.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

J. Polym. Sci. A Polym. Chem.

C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001).
[CrossRef]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.26, 458–480 (2008).

Jpn. J. Appl. Phys.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005).
[CrossRef]

Microelectron. Eng.

U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006).
[CrossRef]

Opt. Mater. (Amst)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009).
[CrossRef]

Surf. Coat. Tech.

B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013).
[CrossRef]

Thin Solid Films

K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Real and imaginary part of the refractive indices of inorganic TiO2 (anatase) [18] nanoparticles and organic Amonil resist matrix material. (b) Extinction cross sections σext for TiO2-Amonil composite materials for different diameters of the TiO2 nanoparticles calculated from Mie theory (solid lines). Rayleigh approximation for scattering cross sections σRay shown as dashed lines. (c) Calculated real part and (d) imaginary part of refractive indices for organic-inorganic composites with 35-nm diameter nanoparticles (NP) in volume concentrations of 0%, 5%, 10%, 20%, and 30% in the matrix material.

Fig. 2
Fig. 2

Overview of fabricated samples with organic-inorganic composite layers of TiO2 nanoparticles in an Amonil nanoimprint resist matrix. Composite layers were spin-coated on silicon wafers (a) and glass substrates (b) for characterization of the optical properties. (c) OLEDs were fabricated on top of the composite layer structured with a Bragg grating of period Λ = 370 nm using UV nanoimprint lithography.

Fig. 3
Fig. 3

Transmission spectra for organic-inorganic composite layers on glass substrates with varying volume percentage of TiO2 nanoparticles in an Amonil matrix. Symbols represent measurement data. Solid lines are calculated transmission curves for 35-nm diameter TiO2 nanoparticles with the optical properties given in Fig. 1. The layer thicknesses d assumed in the calculation are given in the legend.

Fig. 4
Fig. 4

AFM images of imprinted Bragg grating, Λ = 460 nm, for (a) pristine Amonil and (b) Amonil with 30% TiO2 nanoparticles.

Fig. 5
Fig. 5

(a) I-V curves of OLEDs fabricated on pristine Amonil, Amonil with 3% TiO2 nanoparticles, and Amonil with 30% TiO2 nanoparticles. For each of the three types, a reference device without a nanostructure and a nanostructured device with a Bragg grating of period Λ = 370 nm are characterized. (b) Photograph of OLED.

Fig. 6
Fig. 6

Angle- and wavelength-resolved electroluminescence intensity perpendicular to the grating grooves for OLED devices with pristine Amonil, Amonil with 3% TiO2 nanoparticles, and Amonil with 30% TiO2 nanoparticles. The reference devices are unstructured and the nanostructured devices have a Bragg grating of period Λ = 370 nm. The spectrum at each angle is normalized to unity.

Tables (1)

Tables Icon

Table 1 Thickness of organic-inorganic composite layers composed of TiO2 nanoparticles in Amonil nanoimprint resist on a silicon substrate measured using a profilometer as well as a reflectometer. All layers were fabricated by spin-coating at 3000 rpm for 30 seconds. Calculated refractive index values are given in the last column.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n C _ Φ N P = ( 1 Φ N P ) n M + Φ N P n N P
I( d )= I 0 e αd
α = ( 1 Φ N P ) α M + ρ σ e x t
α = 4 π λ 0 k .
σ Ray = 8π 3 ( 2π n M λ 0 ) 4 a 6 ( ( n NP / n M ) 2 1 ( n NP / n M ) 2 +2 ) 2

Metrics