Abstract

Two-dimensional surface relief grating (2D-SRG) on azo-dye doped polymer film (DDPF) was fabricated using the two-step of holographic writing technique. The groove structure of the 2D-SRG was dependent on the rotational angle of the two-step of writing, and the depth of the groove could be enhanced about 2~3 times by using nematic liquid crystal as the interface. The surface modulation of groove on DDPF with or without the interface of nematic liquid crystal depending on the polarization of the writing beams is also discussed. As the rotational angle between the two steps of writing was increased, the depth of the groove was gradually decreased for the writing beams with the S-polarization in the second step of writing, while increasing for the writing beams with the P-polarization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. dos Santos and L. M. Bernardo, “Antireflection structures with use of multilevel subwavelength zero-order gratings,” Appl. Opt.36(34), 8935–8938 (1997).
    [CrossRef] [PubMed]
  2. V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers,” Opt. Lett.18(13), 1089–1091 (1993).
    [CrossRef] [PubMed]
  3. A. Yacoubian and T. M. Aye, “Enhanced optical modulation using azo-dye polymers,” Appl. Opt.32(17), 3073–3080 (1993).
    [CrossRef] [PubMed]
  4. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  5. J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
    [CrossRef]
  6. K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
    [CrossRef]
  7. X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
    [CrossRef]
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt.23(23), 4309–4312 (1984).
    [CrossRef] [PubMed]
  9. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002).
    [CrossRef] [PubMed]
  10. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
    [CrossRef]
  11. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B15(4), 1257–1265 (1998).
    [CrossRef]
  12. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
    [CrossRef]
  13. H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped liquid crystal film,” Appl. Opt.47(13), 2437–2442 (2008).
    [CrossRef] [PubMed]
  14. H. Gao, J. Liu, F. Gan, and B. Ma, “Investigation of multiple holographic recording in azo-dye-doped nematic liquid-crystal film,” Appl. Opt.48(16), 3014–3018 (2009).
    [CrossRef] [PubMed]
  15. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt.46(22), 5368–5373 (2007).
    [CrossRef] [PubMed]
  16. M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
    [CrossRef]
  17. Q. Zhai, S. Tao, T. Zhang, X. Song, and D. Wang, “Investigation on mechanism of multiple holographic recording with uniform diffraction efficiency in photopolymers,” Opt. Express17(13), 10871–10880 (2009).
    [CrossRef] [PubMed]
  18. N. D. Lai, J. H. Lin, and C. C. Hsu, “Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique,” Appl. Opt.46(23), 5645–5648 (2007).
    [CrossRef] [PubMed]
  19. D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
    [CrossRef]
  20. S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
    [CrossRef]
  21. S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
    [CrossRef]
  22. H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
    [CrossRef]
  23. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
    [CrossRef] [PubMed]
  24. S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
    [CrossRef]
  25. D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
    [CrossRef]
  26. F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
    [CrossRef]
  27. R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
    [CrossRef]
  28. C.-T. Kuo and S.-Y. Huang, “Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals,” Appl. Phys. Lett.89(11), 111109 (2006).
    [CrossRef]
  29. S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
    [CrossRef]

2013 (1)

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

2011 (3)

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

2010 (1)

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

2009 (3)

2008 (3)

H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped liquid crystal film,” Appl. Opt.47(13), 2437–2442 (2008).
[CrossRef] [PubMed]

M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
[CrossRef]

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

2007 (3)

2006 (2)

C.-T. Kuo and S.-Y. Huang, “Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals,” Appl. Phys. Lett.89(11), 111109 (2006).
[CrossRef]

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

2005 (1)

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

2003 (1)

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

2002 (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

1999 (1)

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (3)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

1993 (2)

1984 (1)

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Alasaarela, T.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Ando, H.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

Aye, T. M.

Belendez, A.

M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
[CrossRef]

Beléndez, A.

Bernardo, L. M.

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Boilot, J. P.

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

Cheng, W.-S.

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

Choi, S.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

Chun, C.

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

Chun, C. M.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

dos Santos, J. M.

Dragostinova, V.

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

Dreher, S.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

Fabbri, F.

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

Fernandez, E.

M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
[CrossRef]

Fernández, E.

Friesem, A. A.

Gallego, S.

Gan, F.

Gao, H.

García, C.

Garrot, D.

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

Han, Y.-K.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Hill, R. A.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

Holme, N. C. R.

Hong, J.-C.

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

Hsu, C. C.

Huang, B.-Y.

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

Huang, S.-Y.

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

C.-T. Kuo and S.-Y. Huang, “Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals,” Appl. Phys. Lett.89(11), 111109 (2006).
[CrossRef]

Hung, W.-C.

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

Hvilsted, S.

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Ilieva, D.

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

Jiang, Y.

Kaivola, M.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Kim, D. Y.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Kim, D.-Y.

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

Kim, J.-S.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Kim, K. R.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

Kim, M. J.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

Kim, S.-S.

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

Knoesen, A.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

Kravchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Krongauz, V. A.

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Kuo, C.-T.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

C.-T. Kuo and S.-Y. Huang, “Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals,” Appl. Phys. Lett.89(11), 111109 (2006).
[CrossRef]

Lahlil, K.

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

Lai, N. D.

Lassailly, Y.

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

Lee, C.-R.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

Lee, Y.-H.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Li, X. T.

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
[CrossRef]

Lin, C.-H.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

Lin, J. H.

Liu, J.

Ma, B.

Mamiya, J.-I.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Marquez, A.

M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
[CrossRef]

Na, S.-K.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Nakano, H.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
[CrossRef]

Naydenova, I.

Nedelchev, L.

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

Nikolova, L.

Oh, C.-H.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Oh, K.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

Oh, S.-G.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Ortuño, M.

Ovchinnikov, V.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Pascual, I.

Peretti, J.

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

Petrova, Ts.

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

Priimagi, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Ramanujam, P. S.

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
[CrossRef]

Shevchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Shirota, Y.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

Shishido, A.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Song, S.-H.

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

Song, X.

Takahashi, T.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

Tanino, T.

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

Tao, S.

Todorov, T.

Tomova, N.

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt.23(23), 4309–4312 (1984).
[CrossRef] [PubMed]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Valtavirta, V.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Vapaavuori, J.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

Wang, D.

Weiss, V.

Yacoubian, A.

Yankelevich, D. R.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

Yoo, S. J.

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

Yu, K.-Y.

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

Zhai, Q.

Zhang, T.

Zhou, Z.

Adv. Mater. (1)

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23(36), 4174–4177 (2011).
[CrossRef] [PubMed]

Appl. Opt. (7)

Appl. Phys. Lett. (7)

S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, “Interferometric inscription of surface relief gratings on optical fiber using azo polymer film,” Appl. Phys. Lett.83(6), 1080–1082 (2003).
[CrossRef]

D. Garrot, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Real-time near-field imaging of photoinduced matter motion in thin solid films containing azobenzene derivatives,” Appl. Phys. Lett.94(3), 033303 (2009).
[CrossRef]

F. Fabbri, Y. Lassailly, K. Lahlil, J. P. Boilot, and J. Peretti, “Alternating photoinduced mass transport triggered by light polarization in azobenzene containing sol-gel films,” Appl. Phys. Lett.96(8), 081908 (2010).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett.66(17), 2156–2158 (1995).
[CrossRef]

C.-T. Kuo and S.-Y. Huang, “Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals,” Appl. Phys. Lett.89(11), 111109 (2006).
[CrossRef]

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S.-K. Na, J.-S. Kim, S.-H. Song, C.-H. Oh, Y.-K. Han, Y.-H. Lee, and S.-G. Oh, “Efficient formation of surface relief grating on azopolymer films by gold nanoparticles,” J. Appl. Phys.104(10), 103117 (2008).
[CrossRef]

J. Mater. Chem. (3)

H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18(2), 242–246 (2007).
[CrossRef]

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21(39), 15437–15441 (2011).
[CrossRef]

S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem.16(4), 370–375 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

D. Ilieva, L. Nedelchev, Ts. Petrova, N. Tomova, V. Dragostinova, and L. Nikolova, “Holographic multiplexing using photoinduced anisotropy and surface relief in azopolymer films,” J. Opt. A, Pure Appl. Opt.7(1), 35–39 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K.-Y. Yu, C.-R. Lee, C.-H. Lin, and C.-T. Kuo, “Controllable pretilt angle of liquid crystals with the formation of microgrooves,” J. Phys. D Appl. Phys.46(4), 045102 (2013).
[CrossRef]

Opt. Commun. (2)

S.-Y. Huang, B.-Y. Huang, W.-C. Hung, K.-Y. Yu, W.-S. Cheng, and C.-T. Kuo, “Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals,” Opt. Commun.284(4), 934–937 (2011).
[CrossRef]

M. Ortuño, A. Marquez, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun.281(6), 1354–1357 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup used to fabricate the 2D-SRG. M: mirrors, B.S.: 50/50 beam splitter, θ: interference angle.

Fig. 2
Fig. 2

The AFM images of the 2D-SRG on DDPF sample under the writing with S-polarization at the various rotational angles (a) 30°. (b) 45°. (c) 60°. (d) 90°.

Fig. 3
Fig. 3

The AFM images of the 2D-SRG on NLC/DDPF sample under the writing with S-polarization at the various rotational angles (a) 30°. (b) 45°. (c) 60°. (d) 90°.

Fig. 4
Fig. 4

The dependence of the depth of SRG on the rotational angle in the second writing for DDPF and NLC/DDPF.

Fig. 5
Fig. 5

Schematics of description for the formation process of 2D-SRG on NLC/DDPF. (a) and (c) Configurations of samples before the first writing. (b) and (d) Configurations of samples before the second writing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 2sin(θ/2) ,

Metrics