Abstract

We have investigated the broadband terahertz (THz) optical properties of nanoporous silicon samples with different porosities and the ultrafast carrier dynamics of photogenerated charge carriers in these materials. Following photoexcitation, we observe a fast carrier recovery time consisting of two dominant recombination processes with decay constants below ~10 ps. All samples exhibit initially low THz absorption that increases at higher frequencies, and is likely due to contributions from phonon bands and oxidation of the porous surface. The refractive index depends on porosity but shows little frequency dependence. These properties indicate that nanoporous silicon is a useful material for fast, ultrabroadband THz applications (e.g. intensity modulation).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
    [CrossRef]
  2. S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
    [CrossRef]
  3. S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett.34(19), 2921–2923 (2009).
    [CrossRef] [PubMed]
  4. S.-Z. A. Lo, A. M. Rossi, and T. E. Murphy, “Terahertz transmission through p+ porous silicon membranes,” Phys. Status Solidi A206(6), 1273–1277 (2009).
    [CrossRef]
  5. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012).
    [CrossRef] [PubMed]
  6. V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
    [CrossRef] [PubMed]
  7. J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
    [CrossRef]
  8. S.-Z. A. Lo, G. Kumar, T. E. Murphy, and E. J. Heilweil, “Application of nanoporous silicon substrates for terahertz spectroscopy,” Opt. Mater. Express3(1), 114–125 (2013).
    [CrossRef]
  9. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
    [CrossRef] [PubMed]
  10. P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
    [CrossRef]
  11. M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013).
    [CrossRef]
  12. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett.32(12), 1620–1622 (2007).
    [CrossRef] [PubMed]
  13. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32(6), 680–682 (2007).
    [CrossRef] [PubMed]
  14. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
    [CrossRef]
  15. J. Kyoung, M. Seo, H. Park, S. Koo, H. S. Kim, Y. Park, B.-J. Kim, K. Ahn, N. Park, H.-T. Kim, and D.-S. Kim, “Giant nonlinear response of terahertz nanoresonators on VO2 thin film,” Opt. Express18(16), 16452–16459 (2010).
    [CrossRef] [PubMed]
  16. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011).
    [CrossRef] [PubMed]
  17. H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
    [CrossRef]
  18. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
    [CrossRef] [PubMed]
  19. P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008).
    [CrossRef]
  20. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett.25(16), 1210–1212 (2000).
    [CrossRef] [PubMed]
  21. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
    [CrossRef]
  22. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
    [CrossRef]
  23. F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, “Probing Organic Semiconductors with Terahertz Pulses,” in Photophysics of Molecular Materials: From Single Molecules to Single Crystals, G. Lanzani, ed. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006).
  24. T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
    [CrossRef]
  25. V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
    [CrossRef]
  26. D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
    [CrossRef]
  27. P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
    [CrossRef]
  28. H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
    [CrossRef] [PubMed]
  29. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
    [CrossRef]
  30. A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
    [CrossRef]
  31. F. A. Johnson, “Lattice Absorption Bands in Silicon,” Proc. Phys. Soc.73(2), 265–272 (1959).
    [CrossRef]
  32. H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1997).

2013 (2)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013).
[CrossRef]

S.-Z. A. Lo, G. Kumar, T. E. Murphy, and E. J. Heilweil, “Application of nanoporous silicon substrates for terahertz spectroscopy,” Opt. Mater. Express3(1), 114–125 (2013).
[CrossRef]

2012 (3)

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012).
[CrossRef] [PubMed]

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

2011 (2)

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett.34(19), 2921–2923 (2009).
[CrossRef] [PubMed]

S.-Z. A. Lo, A. M. Rossi, and T. E. Murphy, “Terahertz transmission through p+ porous silicon membranes,” Phys. Status Solidi A206(6), 1273–1277 (2009).
[CrossRef]

2008 (3)

P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

2007 (2)

2006 (1)

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

2004 (1)

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

2001 (3)

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

2000 (1)

1998 (1)

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

1997 (2)

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
[CrossRef]

1996 (1)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

1995 (1)

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

1993 (1)

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

1989 (1)

G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
[CrossRef]

1984 (1)

A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
[CrossRef]

1959 (1)

F. A. Johnson, “Lattice Absorption Bands in Silicon,” Proc. Phys. Soc.73(2), 265–272 (1959).
[CrossRef]

Abdullah, A. K. W.

A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
[CrossRef]

Ahn, K.

Astley, V.

Averitt, R. D.

Bank, S. R.

Barret, S.

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

Birkholz, M.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Bomchil, G.

G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
[CrossRef]

Chen, H.-T.

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Cook, D. J.

Cooke, D. G.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Coutaz, J. L.

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Cunningham, P. D.

P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008).
[CrossRef]

Dai, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Dancil, K.-P. S.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Dawson, P.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

Diener, J.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Dittrich, T.

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

Duttagupta, S. P.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Duvillaret, L.

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Fauchet, P. M.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Fekete, L.

Fletcher, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Futagi, T.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Garet, F.

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Ghadiri, M. R.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Gossard, A. C.

Gross, E.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Halimaoui, A.

G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
[CrossRef]

Hayden, L. M.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008).
[CrossRef]

Hecker, N. E.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Hegmann, F. A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Heilweil, E. J.

Hein, G.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

Herino, R.

G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
[CrossRef]

Hirschman, K. D.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Hochstrasser, R. M.

Hryciw, A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Huang, S.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Jen, A. K. Y.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Jepsen, P. U.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Johnson, F. A.

F. A. Johnson, “Lattice Absorption Bands in Silicon,” Proc. Phys. Soc.73(2), 265–272 (1959).
[CrossRef]

Johnson, K.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Kadlec, F.

Kanemitsu, Y.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Kang, C.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Karpowicz, N.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Kee, C.-S.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Kim, B.-J.

Kim, D.-S.

Kim, H. S.

Kim, H.-T.

Kim, T.-D.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

Koch, F.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

Koch, M.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

Koo, S.

Kostoulas, Y.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Kovalev, D.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Kumar, G.

Kunzner, N.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Kužel, P.

Kyoung, J.

Labbé-Lavigne, S.

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

Lee, H.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Lee, J. W.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Lee, K.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Lee, S.-T.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Lemmer, U.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Lesimple, A.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013).
[CrossRef]

Li, Q.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Libon, I. H.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Lin, V. S. Y.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Lips, K.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Lisachenko, M. G.

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Lo, S.-Z. A.

Lu, X.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Luo, J.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Lysenko, V.

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

MacDonald, A. N.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Mamer, O.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Maslin, K. A.

A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
[CrossRef]

Matsumoto, T.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

McLaughlin, C. V.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Meldrum, A.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Mimura, H.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Minamide, H.

T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
[CrossRef]

Mittleman, D. M.

Mizuno, K.

T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
[CrossRef]

Motesharei, K.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Murphy, T. E.

Nemec, H.

Nickel, D.

Nozokido, T.

T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
[CrossRef]

Padilla, W. J.

Park, H.

Park, N.

Park, Y.

Parker, T. J.

A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
[CrossRef]

Peng, C.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

Polishak, B.

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

Polisski, G.

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Price-Gallagher, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Qiu, C.

Rahm, M.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013).
[CrossRef]

Rossi, A. M.

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012).
[CrossRef] [PubMed]

S.-Z. A. Lo, A. M. Rossi, and T. E. Murphy, “Terahertz transmission through p+ porous silicon membranes,” Phys. Status Solidi A206(6), 1273–1277 (2009).
[CrossRef]

Sailor, M. J.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Schairer, W.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Schall, M.

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Seo, M.

Shan, J.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Shu, J.

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Tang, H.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Taylor, A. J.

Timoshenko, V. Y.

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

Tsybeskov, L.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Vandyshev, J. M. V.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

von Behren, J.

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

Wang, J.

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Xia, J.

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Xu, Q.

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Yoo, H. K.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Yoon, Y.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

Zhang, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Zhang, L.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Zhang, X.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Zhang, X.-C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

Zhao, L.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Zhu, L.-G.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Zide, J. M. O.

ACS Nano (1)

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008).
[CrossRef]

C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008).
[CrossRef]

J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001).
[CrossRef]

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004).
[CrossRef]

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011).
[CrossRef]

P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989).
[CrossRef]

Electron. Comm. Jpn. Pt. II (1)

T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995).
[CrossRef]

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Infrared Phys. (1)

A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984).
[CrossRef]

J. Appl. Phys. (1)

S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013).
[CrossRef]

J. Phys. Chem. C (1)

P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008).
[CrossRef]

Nat Commun (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. B (2)

V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001).
[CrossRef]

D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

S.-Z. A. Lo, A. M. Rossi, and T. E. Murphy, “Terahertz transmission through p+ porous silicon membranes,” Phys. Status Solidi A206(6), 1273–1277 (2009).
[CrossRef]

Proc. Phys. Soc. (1)

F. A. Johnson, “Lattice Absorption Bands in Silicon,” Proc. Phys. Soc.73(2), 265–272 (1959).
[CrossRef]

Science (1)

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Other (2)

H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1997).

F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, “Probing Organic Semiconductors with Terahertz Pulses,” in Photophysics of Molecular Materials: From Single Molecules to Single Crystals, G. Lanzani, ed. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope images of a typical nanoporous silicon sample. (a) cross-sectional view showing vertically oriented pores traversing the sample. (b) top view of the sample. Typical pore sizes are 10-30 nm.

Fig. 2
Fig. 2

Change in peak THz transmission as a function of time after excitation for nanoporous Si samples with different porosities. The samples were photoexcited using an 800 nm pump beam with a fluence of 3.6x1015 photons/cm2 (0.9 mJ/cm2) per pulse. The differential transmission was normalized to the transmission through the unexcited sample.

Fig. 3
Fig. 3

Relaxation times, τi, and fit parameters, Ai (inset), as a function of porosity. Data are from fits to differential transmission data shown in Fig. 2, which have been normalized to their respective minimum values ( i A i = 1 ).

Fig. 4
Fig. 4

Broadband THz refractive index, n (left axis), and absorption coefficient, α (right axis), for nanoporous silicon samples. The α-data for the n = 1.46 sample only extend to 8.3 THz due to a reduced dynamic range at higher frequencies for the polymer sensor used in those measurements.

Tables (1)

Tables Icon

Table 1 Nanoporous silicon sample parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 1 p ) ( n S i 2 n e f f 2 ) n S i 2 + 2 n e f f 2 + p ( n a i r 2 n 2 ) n a i r 2 + 2 n 2 = 0

Metrics