Abstract

So far, visible light-induced domain reversal (LIDOR) in LiNbO3 has only been observed to occur under assistance of an external electric field. Here, we develop a two-step technique to directly achieve green-LIDOR for the first time. In the first step, an external electric field as well as the green laser of 532 nm wavelength is applied on the LiNbO3 crystal. In the second step, direct writing of domain structures in LiNbO3 is realized by another 532 nm laser without assistance of external electric field. Green-LIDOR results from a light-induced space-charge field generated by the prior application on an external electric field in the first step. Due to the unique two-step method, our further experiments show that light-induced space-charge field in LIDOR enhances with increasing the applied external electric field. Therefore, we propose a carrier-drift model to this phenomenon.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
    [CrossRef]
  2. V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
    [CrossRef]
  3. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
    [CrossRef]
  4. S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
    [CrossRef]
  5. V. Dierolfa and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
    [CrossRef]
  6. Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
    [CrossRef]
  7. A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
    [CrossRef] [PubMed]
  8. S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
    [CrossRef] [PubMed]
  9. C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
    [CrossRef]
  10. H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
    [CrossRef]
  11. W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
    [CrossRef]
  12. Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
    [CrossRef] [PubMed]
  13. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
    [CrossRef]
  14. P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
    [CrossRef]
  15. H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
    [CrossRef]

2012 (1)

2010 (3)

P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
[CrossRef]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

2009 (2)

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

2005 (1)

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

2004 (1)

V. Dierolfa and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

2002 (2)

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

1998 (2)

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
[CrossRef]

Abernethy, J. A.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Bermúdez, V.

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

Brown, P. T.

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

Buse, K.

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
[CrossRef]

Capmany, J.

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

Chen, S.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Degiorgio, V.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Diéguez, E.

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

Dierolfa, V.

V. Dierolfa and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Eason, R. W.

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Gawith, C. B. E.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

Ge, X.

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

Hoffman, A.

Hou, P.

P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
[CrossRef]

Hu, Q.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Huang, Z.

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

Jungk, T.

Kong, Y.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Liu, D.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Liu, H.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Liu, L.

P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
[CrossRef]

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Liu, S.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Luan, Z.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Mailis, S.

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

Muir, A. C.

Qu, W.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Rupp, R.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

Sandmann, C.

V. Dierolfa and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Smith, P. G. R.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

Soergel, E.

Solé, J. G.

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

Sones, C. L.

Sonesa, C. L.

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

Sun, T.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

Tian, T.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

Valdivia, C. E.

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

Wang, W.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Wengler, M. C.

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

Xu, J.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Ying, Y. J.

Zeng, H.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

Zergioti, I.

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

Zhang, L.

S. Zheng, Y. Kong, H. Liu, S. Chen, L. Zhang, S. Liu, and J. Xu, “Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals,” Opt. Express20(27), 29131–29136 (2012).
[CrossRef] [PubMed]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

Zheng, S.

Zhi, Y.

P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
[CrossRef]

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997).
[CrossRef]

Appl. Phys. Lett. (7)

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett.97(20), 201901 (2010).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

V. Bermúdez, J. Capmany, J. G. Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett.73(5), 593–595 (1998).
[CrossRef]

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett.81(14), 2514–2516 (2002).
[CrossRef]

V. Dierolfa and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

C. L. Sonesa, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

S. Mailis, P. T. Brown, C. L. Sones, I. Zergioti, and R. W. Eason, “Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation,” Appl. Phys., A Mater. Sci. Process.74(2), 135–137 (2002).
[CrossRef]

P. Hou, Y. Zhi, and L. Liu, “Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal,” Appl. Phys., A Mater. Sci. Process.99(1), 105–109 (2010).
[CrossRef]

J. Appl. Phys. (2)

H. Zeng, Y. Kong, H. Liu, S. Chen, Z. Huang, X. Ge, and J. Xu, “Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate,” J. Appl. Phys.107(6), 063514 (2010).
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Opt. Express (3)

Supplementary Material (1)

» Media 1: MOV (4933 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic images of the first step of two-step method. (b) Schematic images of the second step of two-step method. (c)-(f) Etching results of domain size in HF acid in 10 minutes in the second step after applying external electric fields of 1, 2, 3, and 4 kV/mm, respectively in the first step. Those domains were written one by one from left to right and from bottom to top.

Fig. 2
Fig. 2

(a) and (b) Schematic drawing of two-step method after turning over the sample. (c) Microscopic image of the sample after etching in HF for 10 minutes. Those domains were written one by one from left to right and from bottom to top. (d) Real-time CCD image of the domain reversal process.

Fig. 3
Fig. 3

The domain images of second experiment vary slightly with different intensity of the first laser of 256, 128, 64, and 32 kW/cm2 from (a)-(d).

Fig. 4
Fig. 4

(a) Relation between light intensity in the first step and external electric field applied on the sample when domain reversal occurred in an identical light intensity in the second step. (b) Image on a CCD screen (Media 1) when applying a high external electric field in the first step. (c) Image on CCD screen (Media 1) after removing high external electric field.

Fig. 5
Fig. 5

(a) Microscopic image of domain patters in the –z face. (b) The depth of domains in the x face corresponding to (a).The black pits in this in the surface image are caused by etching. (c) Domain patterns after 2 cycles of etching. (d) Domain patterns after 5 cycles of etching corresponding to (c).

Fig. 6
Fig. 6

Carrier drift model for two-step LIDOR. (a) Carriers excited by laser 1 drift to different directions under the external electric field. (b) New balance is formed in the irradiated region. (c) Laser 2 is focused on the –z face to write domain. (d) Domain reversal is induced by laser 2 and Eph.

Metrics