Abstract

A new method of thermal diffusion bonding of different garnet crystals is proposed. Its main advantage is simplicity and low cost: not very stringent requirements to the quality of surface, muffle furnace without press is sufficient. The proposed method enables fabricating composites of YAG, Yb:YAG, Yb:GGG, and TGG crystals with an aperture up to 20 mm and optical contact whose mechanical strength is comparable with that of monocrystals and reflection coefficient at the boundary is close to the Fresnel one.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express21(1), 855–866 (2013).
    [CrossRef] [PubMed]
  2. O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
    [CrossRef]
  3. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20 (2012).
    [CrossRef]
  4. Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express20(22), 24803–24812 (2012).
    [CrossRef] [PubMed]
  5. H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).
  6. A. Sugiyama, H. Fukuyama, T. Sasuga, T. Arisawa, and H. Takuma, “Direct bonding of Ti:sapphire laser crystals,” Appl. Opt.37(12), 2407–2410 (1998).
    [CrossRef] [PubMed]
  7. N. Traggis and N. Claussen, “Epoxy free bonding for high performance lasers,” in 11th Annual Directed Energy Symposium Proceedings, Directed Energy Professional Society (2008).
  8. S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
    [CrossRef]
  9. E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
    [CrossRef]
  10. I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  11. I. B. Mukhin, E. A. Perevezentsev, and O. V. Palashov, “The new technique of thermal bonding for composite active elements fabrication,” presented at the Laser Optics 2012, Saint-Petersburg, Russia, 2012, ThR1–27.
  12. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
    [CrossRef]

2013 (3)

T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express21(1), 855–866 (2013).
[CrossRef] [PubMed]

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

2012 (4)

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20 (2012).
[CrossRef]

Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express20(22), 24803–24812 (2012).
[CrossRef] [PubMed]

1998 (1)

1991 (1)

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Albach, D.

Ananyan, N.

Arisawa, T.

Arzakantsyan, M.

Azrakantsyan, M.

Bagayev, S. N.

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Browlie, P. L.

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Chanteloup, J.-C.

Cheng, Y.

Claussen, N.

N. Traggis and N. Claussen, “Epoxy free bonding for high performance lasers,” in 11th Annual Directed Energy Symposium Proceedings, Directed Energy Professional Society (2008).

Dong, J.

Fukuyama, H.

Gevorgyan, V.

Gonçalvès-Novo, T.

Kaminskii, A. A.

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Khazanov, E. A.

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

Kopylov, Yu. L.

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Kotelyanskii, I. M.

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Kravchenko, V. B.

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Kuznetsov, I. I.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Lee, H. C.

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Meissner, H. E.

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Mukhin, I. B.

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Palashov, O. V.

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Perevezentsev, E. A.

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

Rea, E. C.

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Ren, Y.

Sasuga, T.

Silin, D. E.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Starobor, A. V.

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

Sugiyama, A.

Takuma, H.

Traggis, N.

N. Traggis and N. Claussen, “Epoxy free bonding for high performance lasers,” in 11th Annual Directed Energy Symposium Proceedings, Directed Energy Professional Society (2008).

Vadimova, O. L.

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Vincent, B.

Vyatkin, A. G.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Zheleznov, D. S.

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. B (1)

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012).
[CrossRef]

Opt. Mater. Express (1)

Proc. SPIE (1)

H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).

Quantum Electron. (2)

O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013).
[CrossRef]

E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013).
[CrossRef]

Other (3)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).

I. B. Mukhin, E. A. Perevezentsev, and O. V. Palashov, “The new technique of thermal bonding for composite active elements fabrication,” presented at the Laser Optics 2012, Saint-Petersburg, Russia, 2012, ThR1–27.

N. Traggis and N. Claussen, “Epoxy free bonding for high performance lasers,” in 11th Annual Directed Energy Symposium Proceedings, Directed Energy Professional Society (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A scheme (a) and photos (b) of bonded Yb:YAG/YAG sandwiches.

Fig. 2
Fig. 2

Dependence of the residual reflections in bonded Yb:YAG/YAG sandwiches on the transverse coordinate after heating to 200°C (diamonds), 800°C (triangles) and 1200°C (circles).

Fig. 3
Fig. 3

A Photo of a thermally destroyed Yb:YAG/YAG sandwich.

Fig. 4
Fig. 4

Electron microscope photos with different magnification.

Fig. 5
Fig. 5

Dependence of the luminescence spectrum of Yb:YAG crystal (dashed line), Yb:GGG crystal (dash-and-dot line) and bonded Yb:YAG/YAG:GGG sandwiche on the wavelength.

Metrics