Abstract

Tm, Mg co-doped LiTaO3 crystal is grown by the traditional Czochralski method. By analyzing the absorption and emission measurements of the Tm/Mg: LiTaO3 single crystal with the Judd-Ofelt analysis, the intensity parameters Ω2,4,6, transition probabilities, exited state lifetimes, branching ratios, and emission cross-sections were calculated. Non-photorefractive continuous wave laser operation with a Tm/Mg: LiTaO3 single crystal is demonstrated for the first time. We obtained 1.51 W output power at 1.92 μm with a slope efficiency of near 38.5%, which, to the best of our knowledge, are the largest output power and highest slope efficiency obtained for this crystal thus far. The long-term photorefractive effect was also quantitatively analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
    [CrossRef]
  2. S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
    [CrossRef] [PubMed]
  3. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
    [CrossRef]
  4. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
    [CrossRef]
  5. G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
    [CrossRef]
  6. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
    [CrossRef]
  7. R.C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett.15, 486–488 (1990).
    [CrossRef] [PubMed]
  8. R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995).
    [CrossRef]
  9. X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
    [CrossRef]
  10. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett.32, 2040–2042 (2007).
    [CrossRef] [PubMed]
  11. W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
    [CrossRef]
  12. R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
    [CrossRef]
  13. J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
    [CrossRef]
  14. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett.25, 651–653 (2000).
    [CrossRef]
  15. P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
    [CrossRef]
  16. P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
    [CrossRef]
  17. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
    [CrossRef]
  18. J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
    [CrossRef]
  19. M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
    [CrossRef]
  20. B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
    [CrossRef]
  21. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
    [CrossRef]
  22. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982).
    [CrossRef]
  23. W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
    [CrossRef]
  24. X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
    [CrossRef]
  25. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
    [CrossRef]
  26. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
    [CrossRef]

2013 (4)

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
[CrossRef]

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

2011 (2)

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

2010 (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

2008 (2)

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
[CrossRef]

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

2007 (1)

2004 (2)

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
[CrossRef] [PubMed]

2002 (2)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

2000 (3)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett.25, 651–653 (2000).
[CrossRef]

1999 (1)

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

1998 (1)

B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

1995 (1)

R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995).
[CrossRef]

1992 (1)

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

1990 (1)

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982).
[CrossRef]

1975 (1)

J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
[CrossRef]

1973 (1)

M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Agger, S.

S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Barnes, N.P.

B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Buse, K.

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

Caird, J.

J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett.32, 2040–2042 (2007).
[CrossRef] [PubMed]

DeShazer, L.

J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
[CrossRef]

Di Bartolo, B.

B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Dominiak-Dzik, G.

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

Duan, X. M.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Esterowitz, L.

R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995).
[CrossRef]

R.C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett.15, 486–488 (1990).
[CrossRef] [PubMed]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett.25, 651–653 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Galzerano, G.

Golab, S.

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

Gong, J.

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

Gu, Y.

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Hang, Y.

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Hatanaka, T.

He, X.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

Hu, P.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Imbrock, J.

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

Ito, H.

Iwai, R.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Jelinkova, H.

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982).
[CrossRef]

Ju, Y. L.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Kane, T. J.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Kitamura, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett.25, 651–653 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Kratzig, E.

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

Kubo, T. S.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

Laporta, P.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Li, G.

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Li, H.

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

Lisiecki, R.

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Matsinger, B.H.

M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
[CrossRef]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Nakamura, K.

Nakamura, M.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Nella, J.

J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
[CrossRef]

Nunoshita, M.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Ohta, J.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Parisi, D.

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett.32, 2040–2042 (2007).
[CrossRef] [PubMed]

Povlsen, J.

S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
[CrossRef] [PubMed]

Romanowskia, W.

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

Sasagawa, K.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Shan, L.

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Sokolska, I.

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

Song, C. W.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Stoneman, R.C.

R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995).
[CrossRef]

R.C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett.15, 486–488 (1990).
[CrossRef] [PubMed]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Sulcb, J.

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

Takekawa, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Tang, Y.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
[CrossRef]

Taniuchi, T.

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

Tonelli, M.

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett.32, 2040–2042 (2007).
[CrossRef] [PubMed]

Varitimos, T.E.

M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
[CrossRef]

Varming, P.

S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
[CrossRef] [PubMed]

Walsh, B.M.

B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Wang, Y.

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Wang, Y. Z.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Weber, M.J.

M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
[CrossRef]

Wevering, S.

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

Xiong, J.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Xu, J.

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
[CrossRef]

Xu, W. S.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

Xu, Y. H.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

Yang, J.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
[CrossRef]

Yao, B.

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Yao, B. Q.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Yin, J.

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Yonezawa, Z.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Zhang, C.

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

Zhang, L.

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Zhang, P.

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

Zhang, R.

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

Zhang, Y. J.

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

Zhao, C.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Zhao, C. Z.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

Zhao, L. C.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

Zhen, X. H.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966).
[CrossRef]

Chin. Opt. Lett. (2)

X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008).
[CrossRef]

G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013).
[CrossRef]

Cryst. Res. Technol. (1)

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002).
[CrossRef]

IEEE J. Quantum Electron. (4)

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982).
[CrossRef]

J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975).
[CrossRef]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995).
[CrossRef]

J. Alloys Compd. (1)

W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000).
[CrossRef]

J. Appl. Phys. (1)

B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

J. Cryst. Growth. (1)

P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013).
[CrossRef]

J. Opt. Soc. Am. B. (1)

J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999).
[CrossRef]

Jpn. J. Appl. Phys., Part 2-Lett. (1)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002).
[CrossRef]

Laser Photon. Rev. (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Opt. Exp. (1)

R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013).
[CrossRef]

Opt. Lett. (1)

S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011).
[CrossRef]

Photonics Research. (1)

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013).
[CrossRef]

Phys. Rev. B. (1)

M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973).
[CrossRef]

Prog. Quant. Electron (1)

W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectrum of Tm/Mg: LiTaO3 crystal. The inset shows the picture of the as-grown crystal.

Fig. 2
Fig. 2

Partial scheme of the energy levels of the Tm3+ ion. NR and CR represent nonradiative decay and cross-relaxation, respectively.

Fig. 3
Fig. 3

Emission cross sections of Tm/Mg: LiTaO3 crystal. The inset shows the fluorescence decay curve of the 3F4 multiplet.

Fig. 4
Fig. 4

Gain cross-section spectra of Tm3+: 3F43H6 in the Tm/Mg: LiTaO3 crystal.

Fig. 5
Fig. 5

Experimental configuration of the Tm/Mg: LiTaO3 laser.

Fig. 6
Fig. 6

(a) Output power of the Tm/Mg: LiTaO3 laser versus the absorption pump power. The inset is the laser spectrum for Tm/Mg: LiTaO3 laser; (b) Laser beam radius as a function of distance from the waist location (z=0) at output power of 1.51 W.

Fig. 7
Fig. 7

Experimental setup for photorefractive effect measurement. 1: The 532 nm laser, 2: Light shed, 3: Detector, 4: Beam splitter, 5: Convex lens, 6: Beam diagnostics camera.

Fig. 8
Fig. 8

Rations of radii c-axis and b-axis under different power densities for a long period of time.

Fig. 9
Fig. 9

The 532 nm laser beam profile. (a) Without Tm/Mg: LT crystal; (b)Transmitted laser beam profile after 600 s irradiation of 16 kW/cm2 power density.

Tables (3)

Tables Icon

Table 1 Example of demonstrated laser action in main Tm-doped crystals

Tables Icon

Table 2 Judd-Ofelt parameters and radiative lifetime of different Tm doped crystals.

Tables Icon

Table 3 Line strengths, branching ratios, transition probabilities and radiative lifetimes in Tm/Mg: LiTaO3 crystal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ em = A β λ 5 I ( λ ) 8 π c n 2 λ I ( λ ) d λ
G ( λ ) = P σ em ( 1 P ) σ abs
R = P S = P π d 2 ( f λ ) 2

Metrics