Abstract

Direct UV laser writing on chromium coated lithium niobate (LiNbO3) crystals is found to produce spontaneous domain inversion associated with the exposed UV laser tracks. Experimental evidence suggests that this effect is attributed to local out-diffusion of oxygen, reducing the LiNbO3 crystal surface due to the presence of chromium. The thin chromium film becomes hot and reactive after absorbing the UV laser radiation thus acting as an oxygen getter. This very efficient process enables the inversion of domains at lower intensities as compared to other direct laser based poling methods practically eliminating the deleterious surface damage induced by the direct absorption of the UV laser radiation by the crystal. Furthermore, the versatility of this domain fabrication method, is demonstrated by the production of inverted domain structures on Z-, Y- and 128°YX-cut substrates.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” Quantum Electronics, IEEE Journal of 33(10), 1663–1672 (1997).
    [CrossRef]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002).
    [CrossRef] [PubMed]
  3. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
    [CrossRef]
  4. J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
    [CrossRef]
  5. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
    [CrossRef]
  6. M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys.84(4), 2199 (1998).
    [CrossRef]
  7. F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
    [CrossRef]
  8. S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
    [CrossRef]
  9. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
    [CrossRef]
  10. G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” Proceedings Ultrasonics Symposium (IEEE, 1990), pp. 435–438.
  11. K. Nakamura and H. Shimizu, “Local domain inversion in ferroelectric crystals and its application to piezoelectric devices,” Proceedings Ultrasonics Symposium (IEEE, 1989), pp. 309–318.
    [CrossRef]
  12. S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys.50(7), 4599–4603 (1979).
    [CrossRef]
  13. H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
    [CrossRef]
  14. A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
    [CrossRef] [PubMed]
  15. A. Boes, H. Steigerwald, T. Crasto, S. A. Wade, T. Limboeck, E. Soergel, and A. Mitchell, “Tailor-made domain structures on the x- and y-face of lithium niobate crystals,” Appl. Phys. B 10.1007/s00340-013-5639-3 (2013).
  16. A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
    [CrossRef]
  18. A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,” Opt. Spectrosc.56, 645–649 (1984).
  19. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
    [CrossRef]
  20. M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).
  21. S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
    [CrossRef]
  22. A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys.68(11), 5804–5809 (1990).
    [CrossRef]
  23. K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett.43(4), 336–338 (1983).
    [CrossRef]
  24. P. J. Jorgensen and R. W. Bartlett, “High temperature transport processes in lithium niobate,” J. Phys. Chem. Solids30(12), 2639–2648 (1969).
    [CrossRef]
  25. V. D. Kugel and G. Rosenman, “Domain inversion in heat-treated LiNbO3 crystals,” Appl. Phys. Lett.62(23), 2902 (1993).
    [CrossRef]
  26. L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett.65(14), 1763–1765 (1994).
    [CrossRef]
  27. G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
    [CrossRef]
  28. K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
    [CrossRef]
  29. H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
    [CrossRef]
  30. H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
    [CrossRef]
  31. J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
    [CrossRef]
  32. A. Dhar and A. Mansingh, “On the correlation between optical and electrical properties in reduced lithium niobate crystals,” J. Phys. D Appl. Phys.24(9), 1644–1648 (1991).
    [CrossRef]
  33. V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
    [CrossRef]
  34. P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
    [CrossRef]
  35. E. M. Standifer, D. H. Jundt, R. G. Norwood, and P. F. Bordui, “Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance,” Proceedings of the 1998 IEEE International Frequency Control Symposium (IEEE, 1998), 470–472.
    [CrossRef]
  36. J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
    [CrossRef]
  37. D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
    [CrossRef]
  38. D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

2013 (2)

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

2012 (1)

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

2011 (3)

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

2010 (1)

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

2009 (1)

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

2008 (1)

2007 (1)

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

2002 (2)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

1999 (1)

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

1998 (2)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys.84(4), 2199 (1998).
[CrossRef]

1997 (2)

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” Quantum Electronics, IEEE Journal of 33(10), 1663–1672 (1997).
[CrossRef]

1995 (2)

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
[CrossRef]

1994 (2)

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett.65(14), 1763–1765 (1994).
[CrossRef]

1993 (2)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

V. D. Kugel and G. Rosenman, “Domain inversion in heat-treated LiNbO3 crystals,” Appl. Phys. Lett.62(23), 2902 (1993).
[CrossRef]

1991 (2)

A. Dhar and A. Mansingh, “On the correlation between optical and electrical properties in reduced lithium niobate crystals,” J. Phys. D Appl. Phys.24(9), 1644–1648 (1991).
[CrossRef]

H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
[CrossRef]

1990 (1)

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys.68(11), 5804–5809 (1990).
[CrossRef]

1987 (1)

K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
[CrossRef]

1984 (1)

A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,” Opt. Spectrosc.56, 645–649 (1984).

1983 (1)

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett.43(4), 336–338 (1983).
[CrossRef]

1979 (1)

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys.50(7), 4599–4603 (1979).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

1969 (1)

P. J. Jorgensen and R. W. Bartlett, “High temperature transport processes in lithium niobate,” J. Phys. Chem. Solids30(12), 2639–2648 (1969).
[CrossRef]

Ågren, J.

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Almeida, J. M.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Ando, H.

K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Baldenberger, G.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

Barr, J.

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Bartlett, R. W.

P. J. Jorgensen and R. W. Bartlett, “High temperature transport processes in lithium niobate,” J. Phys. Chem. Solids30(12), 2639–2648 (1969).
[CrossRef]

Benchabane, S.

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

Boes, A.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Bordui, P. F.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” Quantum Electronics, IEEE Journal of 33(10), 1663–1672 (1997).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Bourliaguet, B.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

Boyle, G.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Buse, K.

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Caccavale, F.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Catlow, C.

H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
[CrossRef]

Chakraborty, P.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

Crasto, T.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

De La Rue, R. M.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Dhar, A.

A. Dhar and A. Mansingh, “On the correlation between optical and electrical properties in reduced lithium niobate crystals,” J. Phys. D Appl. Phys.24(9), 1644–1648 (1991).
[CrossRef]

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys.68(11), 5804–5809 (1990).
[CrossRef]

Donnerberg, H. J.

H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
[CrossRef]

Eason, R.

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Eason, R. W.

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Fejer, M. M.

Friend, J.

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Frohnhaus, J.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

Fujimura, M.

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Galipeau, J. D.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Généreux, F.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Halliburton, L. E.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett.43(4), 336–338 (1983).
[CrossRef]

Hallström, S.

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Halvarsson, M.

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Hanna, D. C.

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Hatori, M.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
[CrossRef]

Hoffman, A.

Höglund, L.

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Hossain, J.

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

Huang, L.

L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett.65(14), 1763–1765 (1994).
[CrossRef]

Ievlev, A. V.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Ironside, C. N.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Jaeger, N. A. F.

L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett.65(14), 1763–1765 (1994).
[CrossRef]

Janner, D.

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

Jonsson, T.

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Jorgensen, P. J.

P. J. Jorgensen and R. W. Bartlett, “High temperature transport processes in lithium niobate,” J. Phys. Chem. Solids30(12), 2639–2648 (1969).
[CrossRef]

Julkarnain, M.

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

Jundt, D. H.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Jungk, T.

Khan, K. A.

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Kugel, V. D.

G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
[CrossRef]

V. D. Kugel and G. Rosenman, “Domain inversion in heat-treated LiNbO3 crystals,” Appl. Phys. Lett.62(23), 2902 (1993).
[CrossRef]

Kurz, J. R.

Kuznetsov, D. K.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Leite, A. P.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

Lilienblum, M.

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Lobov, A. I.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Mailis, S.

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Mamedov, A. M.

A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,” Opt. Spectrosc.56, 645–649 (1984).

Mansingh, A.

A. Dhar and A. Mansingh, “On the correlation between optical and electrical properties in reduced lithium niobate crystals,” J. Phys. D Appl. Phys.24(9), 1644–1648 (1991).
[CrossRef]

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys.68(11), 5804–5809 (1990).
[CrossRef]

Mansour, I.

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Mingaliev, E. A.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Mitchell, A.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Miyazawa, S.

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys.50(7), 4599–4603 (1979).
[CrossRef]

Muir, A. C.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” Quantum Electronics, IEEE Journal of 33(10), 1663–1672 (1997).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Nakamura, K.

K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
[CrossRef]

Norwood, R. G.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Parameswaran, K. R.

Pruneri, V.

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Rezk, A.

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Rosenman, G.

G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
[CrossRef]

V. D. Kugel and G. Rosenman, “Domain inversion in heat-treated LiNbO3 crystals,” Appl. Phys. Lett.62(23), 2902 (1993).
[CrossRef]

Roussev, R. V.

Route, R. K.

Russell, P. S. J.

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Saitoh, M.

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys.84(4), 2199 (1998).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Sawin, R. L.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Sharif, K. S.

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

Shimizu, H.

K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
[CrossRef]

Shur, D.

G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
[CrossRef]

Shur, V. Y.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Soergel, E.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

Sones, C. L.

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express16(4), 2336–2350 (2008).
[CrossRef] [PubMed]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

Sonoda, S.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
[CrossRef]

Standifer, E. M.

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

Steigerwald, H.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Sturman, B.

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Sweeney, K. L.

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett.43(4), 336–338 (1983).
[CrossRef]

Tomlinson, S. M.

H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
[CrossRef]

Tsuruma, I.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
[CrossRef]

Vallee, R.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

von Cube, F.

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Wade, S.

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Webjörn, J.

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Yakunina, E. M.

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

Yamada, M.

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys.84(4), 2199 (1998).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Yeo, L.

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Yeo, L. Y.

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

Ying, Y.

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Ying, Y. J.

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Yudistira, D.

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Appl. Phys. Lett. (1)

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in a domain-inverted MgO-doped LiNbO3 waveguide by using a polarization axis inclined substrate,” Appl. Phys. Lett.71(21), 3048 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

V. D. Kugel and G. Rosenman, “Domain inversion in heat-treated LiNbO3 crystals,” Appl. Phys. Lett.62(23), 2902 (1993).
[CrossRef]

L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett.65(14), 1763–1765 (1994).
[CrossRef]

Appl. Phys. Lett. (9)

K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett.43(4), 336–338 (1983).
[CrossRef]

K. Nakamura, H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett.50(20), 1413 (1987).
[CrossRef]

V. Y. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev, “In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation,” Appl. Phys. Lett.99(8), 082901 (2011).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallee, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett.91(23), 231112 (2007).
[CrossRef]

H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett.98(6), 062902 (2011).
[CrossRef]

A. Boes, T. Crasto, H. Steigerwald, S. Wade, J. Frohnhaus, E. Soergel, and A. Mitchell, “Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light,” Appl. Phys. Lett.103(14), 142904 (2013).
[CrossRef]

D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett.95(5), 052901 (2009).
[CrossRef]

Canadian Journal on Chemical Engineering & Technology (1)

M. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, “Optical properties of thermally evaporated Cr2O3 thin films,” Canadian Journal on Chemical Engineering & Technology, 3(4), 81–85 (2012).

Electron. Lett. (1)

J. Webjörn, V. Pruneri, P. S. J. Russell, J. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett.30(11), 894–895 (1994).
[CrossRef]

Ferroelectrics (1)

G. Rosenman, V. D. Kugel, and D. Shur, “Diffusion-induced domain inversion in ferroelectrics,” Ferroelectrics172(1), 7–18 (1995).
[CrossRef]

J. Appl. Phys. (4)

P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, “Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance,” J. Appl. Phys.85(7), 3766 (1999).
[CrossRef]

J. M. Almeida, G. Boyle, A. P. Leite, R. M. De La Rue, C. N. Ironside, F. Caccavale, P. Chakraborty, and I. Mansour, “Chromium diffusion in lithium niobate for active optical waveguides,” J. Appl. Phys.78(4), 2193 (1995).
[CrossRef]

A. Dhar and A. Mansingh, “Optical properties of reduced lithium niobate single crystals,” J. Appl. Phys.68(11), 5804–5809 (1990).
[CrossRef]

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys.84(4), 2199 (1998).
[CrossRef]

J. Appl. Phys. (1)

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys.50(7), 4599–4603 (1979).
[CrossRef]

J. Mater. Chem. (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem.12(2), 295–298 (2002).
[CrossRef]

J. Phys. Chem. Solids (2)

P. J. Jorgensen and R. W. Bartlett, “High temperature transport processes in lithium niobate,” J. Phys. Chem. Solids30(12), 2639–2648 (1969).
[CrossRef]

H. J. Donnerberg, S. M. Tomlinson, and C. Catlow, “Defects in LiNbO3—II. Computer simulation,” J. Phys. Chem. Solids52(1), 201–210 (1991).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Dhar and A. Mansingh, “On the correlation between optical and electrical properties in reduced lithium niobate crystals,” J. Phys. D Appl. Phys.24(9), 1644–1648 (1991).
[CrossRef]

Opt. Spectrosc. (1)

A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,” Opt. Spectrosc.56, 645–649 (1984).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

Phys. Rev. B (1)

H. Steigerwald, M. Lilienblum, F. von Cube, Y. Ying, R. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B82(21), 214105 (2010).
[CrossRef]

Quantum Electronics, IEEE Journal of (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” Quantum Electronics, IEEE Journal of 33(10), 1663–1672 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

J. Friend and L. Y. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

Selected Topics in Quantum Electronics, IEEE Journal of (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” Selected Topics in Quantum Electronics, IEEE Journal of6(1), 69–82 (2000).
[CrossRef]

Solid State Ion. (1)

S. Hallström, M. Halvarsson, L. Höglund, T. Jonsson, and J. Ågren, “High temperature oxidation of chromium: Kinetic modeling and microstructural investigation,” Solid State Ion.240, 41–50 (2013).
[CrossRef]

Other (5)

E. M. Standifer, D. H. Jundt, R. G. Norwood, and P. F. Bordui, “Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance,” Proceedings of the 1998 IEEE International Frequency Control Symposium (IEEE, 1998), 470–472.
[CrossRef]

G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” Proceedings Ultrasonics Symposium (IEEE, 1990), pp. 435–438.

K. Nakamura and H. Shimizu, “Local domain inversion in ferroelectric crystals and its application to piezoelectric devices,” Proceedings Ultrasonics Symposium (IEEE, 1989), pp. 309–318.
[CrossRef]

A. Boes, H. Steigerwald, T. Crasto, S. A. Wade, T. Limboeck, E. Soergel, and A. Mitchell, “Tailor-made domain structures on the x- and y-face of lithium niobate crystals,” Appl. Phys. B 10.1007/s00340-013-5639-3 (2013).

D. Yudistira, A. Boes, A. Rezk, L. Yeo, J. Friend, and A. Mitchell, “UV direct write Metal Enhanced Redox (MER) domain patterning for writing surface acoustic piezoelectric superlattice in lithium niobate,” Adv. Mater. Interfaces. submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Color change of a Z-cut CLN crystal after UV irradiation with intensities of 1.75 × 105 and 2.92 × 105 W/cm2 in air and dry nitrogen atmosphere (pictures taken after removal of the 40nm Cr coating). The inset shows the individual UV irradiated tracks. The crystal darkens most dramatically, when high laser intensity is used in a nitrogen atmosphere.

Fig. 2
Fig. 2

Illustration of the proposed Cr oxidation process in ambient atmosphere (a) to (c) and dry nitrogen atmosphere (d) to (f). In ambient atmosphere the Cr oxidizes from both interfaces (b), which leads to a faster completely oxidization, when higher UV light intensities are used (c). In dry nitrogen atmosphere the Cr oxidizes only from the Cr-LiNbO3 interface (e), hence the complete oxidization of the Cr layer can be delayed at higher UV light intensities.

Fig. 3
Fig. 3

Direct writing on 40 nm-thick Cr-coated (a) and uncoated (b) LiNbO3 crystals. Despite the higher reflectivity of the Cr layer and a lower used intensity, the domain size is larger than the domain size achieved on the uncoated crystal. In both cases there are signs of surface damage.

Fig. 4
Fig. 4

SEM images of UV written domains in air atmosphere for Cr coating thicknesses of 20 nm to 60 nm and laser irradiation intensities of 2.14 × 105 to 2.44 × 105 W/cm2 on Z-cut crystals. For 20 nm Cr coatings, poling occurs at the low intensity region of the laser beam only, yielding edge domains. For 40 nm-thick Cr coatings, the transition from entire to edge domains via a hollow domain is observed. For 60 nm-thick Cr coatings, entire domains are generated for all intensities.

Fig. 5
Fig. 5

Illustration of the interplay of the diffusion gradient based electric field and the poling hindering UV induced electrons. In (a) the Cr layer is not completely oxidized, hence no UV induced free charge carriers are generated in the crystal and the oxygen reduced crystal is domain inverted - corresponds to Fig. 4(e). In (b) the UV intensity is increased, therefore more of the Cr layer is oxidized, which leads to some UV photons entering the crystal. The UV photons induce free charge carriers, which reduce the diffusion gradient-based electric field. This leads to a non-inverted part at the center of the very surface, resulting in a ‘hollow’ domain - corresponds to Fig. 4(f). In (c) the UV intensity is further increased, which results in a ‘completely’ oxidized Cr layer. Therefore even more free charge carriers are generated in the crystal, which drift under the influence of the diffusion-based electric field deeper into the crystal, resulting in edge domains - corresponds to Fig. 4(g).

Fig. 6
Fig. 6

SEM images of the UV-written domains on a 40 nm Cr coated Z-cut LiNbO3 crystal in a nitrogen atmosphere for different laser intensities. The white dotted line indicates the edge from the wedge polishing.

Fig. 7
Fig. 7

(a) to (d) present the HF etched cross-sections of UV direct written domains on a 40 nm Cr coated Y-cut LiNbO3 crystal with an UV laser light intensity of 2.14 × 105 to 2.44 × 105 W/cm2, respectively. The writing was performed in a nitrogen atmosphere.

Fig. 8
Fig. 8

HF etched cross-sections of UV direct written domains on an uncoated and a 40 nm Cr coated Y-cut LiNbO3 crystal with an UV laser light intensity of 2.73 × 105, where the scanning direction was along the -Z (a and c) and + Z direction (b and d). No dependence of the scanning direction can be observed for Cr coated crystals, whereas for the uncoated crystal it is only possible to write a domain when the scanning direction is along the -Z direction.

Fig. 9
Fig. 9

Periodically poled 128° YX-cut LiNbO3 crystal by scanning the UV laser light across the surface with a spacing of 21 µm between the scan lines.

Metrics