Abstract

A visible-to-near-infrared spectral converting phosphor Ce3+, Pr3+ co-doped Sr2SiO4 was synthesized by a solid-state reaction, and was developed as a potential solar spectral convertor for Si solar cells. The diffuse reflection, photoluminescence excitation and emission spectra at room temperature and at 3K were investigated. The visible and near infrared luminescent properties and energy levels of Pr3+ were investigated in detail. These results demonstrate that the absorption of Pr3+ was greatly broaden and enhanced in UV-Vis through efficient energy feeding by allowed 4f-5d absorption of Ce3+. The energy transfer mechanism including downshift and quantum cutting process is also proposed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
    [CrossRef] [PubMed]
  2. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers.” Sol. Energy, Mat. Sol. C.90(15), 2329–2337 (2006).
    [CrossRef]
  3. B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
    [CrossRef]
  4. W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+,” Opt. Express20(S4), A510–A518 (2012).
    [CrossRef] [PubMed]
  5. Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
    [CrossRef]
  6. D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
    [CrossRef]
  7. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. H. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
    [CrossRef] [PubMed]
  8. Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
    [CrossRef]
  9. X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
    [CrossRef]
  10. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
    [CrossRef]
  11. G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
    [CrossRef]
  12. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  13. A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
    [CrossRef]
  14. G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer-Verlag, 1994), Chap. 4.
  15. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel., “Pr3+-doped fluoride fiber amplifier operating at 1.31 microm,” Opt. Lett.16(22), 1747–1749 (1991).
    [CrossRef] [PubMed]
  16. G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
    [CrossRef]

2013 (2)

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express3(5), 633–644 (2013).
[CrossRef]

2012 (4)

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+,” Opt. Express20(S4), A510–A518 (2012).
[CrossRef] [PubMed]

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

2011 (2)

X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
[CrossRef]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

2010 (2)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

2009 (2)

2006 (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers.” Sol. Energy, Mat. Sol. C.90(15), 2329–2337 (2006).
[CrossRef]

1991 (1)

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Aarts, L.

B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Bensalah-Ledoux, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

Breton, G.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

Chen, D. P.

Chen, Y.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

Dong, G. P.

Gao, G.

Guille, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

Han, S. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

Huang, W.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

Huang, X. Y.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Ji, X. H.

X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
[CrossRef]

Kanamori, T.

Kitagawa, T.

Kuang, X. J.

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+,” Opt. Express20(S4), A510–A518 (2012).
[CrossRef] [PubMed]

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Li, Y.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+,” Opt. Express20(S4), A510–A518 (2012).
[CrossRef] [PubMed]

Liang, H. B.

Liu, C. M.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Liu, X. F.

Liu, X. G.

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

Meijerink, A.

B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Moine, B.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

Ohishi, Y.

Pereira, A.

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

Qiao, Y. H.

Qiu, J.

Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Qiu, J. R.

Richards, B. S.

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers.” Sol. Energy, Mat. Sol. C.90(15), 2329–2337 (2006).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Sigel, G. H.

Snitzer, E.

Su, Q.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Takahashi, S.

Tang, J. K.

Teng, Y.

Van Der Ende, B. M.

B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Wang, J.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+,” Opt. Express20(S4), A510–A518 (2012).
[CrossRef] [PubMed]

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Wondraczek, L.

Xie, J. H.

Yang, J.

Ye, S.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Yu, D. C.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

Zhang, G.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

Zhang, G. G.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Zhang, Q. Y.

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Zhou, J.

Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Zhou, W.

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

Zhou, W. L.

Zhuang, Y. X.

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Adv. Mater. (1)

B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Appl. Phys. Express (1)

Y. Li, J. Wang, W. Zhou, G. Zhang, Y. Chen, and Q. Su, “Ultraviolet–visible–near-infrared luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral converter,” Appl. Phys. Express6(8), 082301 (2013).
[CrossRef]

Chem. Soc. Rev. (1)

X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev.42(1), 173–201 (2012).
[CrossRef] [PubMed]

J. Alloy. Comp. (1)

D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, “Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+, Yb3+,” J. Alloy. Comp.509(41), 9919–9923 (2011).
[CrossRef]

J. Am. Ceram. Soc. (1)

X. Y. Huang, X. H. Ji, and Q. Y. Zhang, “Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors,” J. Am. Ceram. Soc.94(3), 833–837 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, and B. Moine, “Energy transfer in CaYAlO4:Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys.111(4), 043104 (2012).
[CrossRef]

J. Electrochem. Soc. (1)

Y. Teng, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ ions co-doped CaAl2O4 phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

J. Mater. Chem. (1)

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Sol. Energy, Mat. Sol. C. (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers.” Sol. Energy, Mat. Sol. C.90(15), 2329–2337 (2006).
[CrossRef]

Other (1)

G. Blasse and B. C. Grabmaier, Luminescent Materials, (Springer-Verlag, 1994), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Powder XRD patterns of Sr2SiO4:0.02Ce3+ (a), Sr2SiO4:0.02Pr3+ (b) and Sr2SiO4: 0.02Ce3+, 0.02Pr3+ (c) at RT.

Fig. 2
Fig. 2

DRS of Sr2SiO4, Sr2SiO4:0.02Pr3+ and Sr2SiO4: 0.02Ce3+, 0.02Pr3+.

Fig. 3
Fig. 3

PLE and PL spectra of Sr2SiO4:0.02Ce3+ (a), Sr2SiO4:0.02Pr3+ (b) and Sr2SiO4: 0.02Ce3+, 0.02Pr3+ (c) in the visible region at RT.

Fig. 4
Fig. 4

PLE and NIR emission spectra of Sr2SiO4:0.02Pr3+ (a), Sr2SiO4: 0.02Ce3+, 0.02Pr3+ (b) at RT. PL spectra in NIR region (c, λex =350 nm) and in Vis region (e, λex = 350 nm) of Sr2SiO4: xCe3+, 0.02Pr3+ (x = 0.01-0.10). (d): the locally enlarged spectra of (c).

Fig. 5
Fig. 5

Schematic diagram for energy transfer mechanism of Sr2SiO4: 0.02Ce3+, 0.02Pr3+. The upper left corner shows the PLE and PL of Sr2SiO4:Ce3+ at 3 K.

Tables (1)

Tables Icon

Table 1 The lifetime data of Pr3+ in Sr2SiO4: 0.02Pr3+ and Sr2SiO4: 0.10Ce3+,0.02Pr3+.

Metrics