Abstract

Strong near-infrared (NIR) localized surface plasmon resonances (LSPRs) have been observed in spherical Cu1.94S nanocrystals and matchstick-like Cu1.94S-ZnS heterostructured nanocrystals, which have been synthesized using a simple one-pot approach without any injection and pre-synthesis of metal precursors. The LSPRs peak of the Cu1.94S nanocrystals could be tuned from 1680 nm to 1375 nm by heterogrowth of ZnS onto the Cu1.94S nanocrystals due to the increase of free carriers (holes). The LSPRs absorbance can be optimized to 1322 nm by prolonging the growth time of the heterostructured nanocrystals, which may be used as a light absorbing agent for photothermal therapy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Jeon, S. J. Park, and T. W. Kim, “Electrical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly(N-vinylcarbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012).
    [CrossRef]
  2. A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
    [CrossRef]
  3. J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
    [CrossRef]
  4. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
    [CrossRef] [PubMed]
  5. S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
    [CrossRef] [PubMed]
  6. A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
    [CrossRef]
  7. A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
    [CrossRef]
  8. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
    [CrossRef] [PubMed]
  9. Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012).
    [CrossRef] [PubMed]
  10. L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010).
    [CrossRef]
  11. W. S. Song, S. H. Lee, and H. Yang, “Fabrication of warm, high CRI white LED using non-cadmium quantum dots,” Opt. Mater. Express3(9), 1468–1473 (2013).
    [CrossRef]
  12. X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
    [CrossRef]
  13. I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
    [CrossRef] [PubMed]
  14. H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
    [CrossRef]
  15. H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
    [CrossRef] [PubMed]
  16. W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
    [CrossRef] [PubMed]
  17. S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
    [CrossRef] [PubMed]
  18. M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
    [CrossRef] [PubMed]
  19. R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012).
    [CrossRef]
  20. J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
    [CrossRef] [PubMed]
  21. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
    [CrossRef] [PubMed]
  22. S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
    [CrossRef] [PubMed]
  23. S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
    [CrossRef]
  24. K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012).
    [CrossRef] [PubMed]
  25. F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
    [CrossRef] [PubMed]
  26. F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
    [CrossRef]
  27. L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
    [CrossRef]
  28. L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003).
    [CrossRef] [PubMed]

2013 (3)

W. S. Song, S. H. Lee, and H. Yang, “Fabrication of warm, high CRI white LED using non-cadmium quantum dots,” Opt. Mater. Express3(9), 1468–1473 (2013).
[CrossRef]

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

2012 (10)

Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012).
[CrossRef] [PubMed]

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Y. P. Jeon, S. J. Park, and T. W. Kim, “Electrical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly(N-vinylcarbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012).
[CrossRef]

R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012).
[CrossRef]

S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
[CrossRef]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012).
[CrossRef] [PubMed]

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

2011 (6)

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

2010 (4)

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010).
[CrossRef]

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

2008 (2)

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

2005 (1)

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

2003 (1)

L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003).
[CrossRef] [PubMed]

2002 (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Alee, K. S.

Alivisatos, A. P.

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012).
[CrossRef] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003).
[CrossRef] [PubMed]

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Bosman, M.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Bryks, W.

S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
[CrossRef]

Burda, C.

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Carbone, L.

L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010).
[CrossRef]

Cartwright, A. N.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Chen, C. C.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Chen, D. Q.

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

Chen, Y. F.

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Chuang, C. H.

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Cozzoli, P. D.

L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010).
[CrossRef]

da Como, E.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Deepak, K. L. N.

Dittmer, J. J.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Feldmann, J.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Feng, B.

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Gao, M. Y.

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

Gong, M.

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Han, M. Y.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Han, S. K.

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Han, W.

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

Hong, Z. R.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Hou, Y. B.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Hsu, S. W.

S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
[CrossRef]

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Hsu, W. C.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Huang, F.

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

Huang, L. M.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Huynh, W. U.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Jao, M. H.

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Jeon, Y. P.

Jiang, C. Y.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Jyothi, L.

Kim, T. W.

Koh, W. L.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Kriegel, I.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Kuladeep, R.

Law, W. C.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Lee, S. H.

Li, L. S.

L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003).
[CrossRef] [PubMed]

Li, Y. D.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Liao, H. C.

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Lim, S. H.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Liu, X.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Lo, S. S.

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Lu, Z. D.

Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012).
[CrossRef] [PubMed]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Manthiram, K.

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012).
[CrossRef] [PubMed]

Mirkovic, T.

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Niu, M.

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

On, K.

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Park, S. J.

Peng, H. S.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Polavarapu, L.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Qu, S. C.

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

Rao, D. N.

Regulacio, M. D.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Rodríguez-Fernández, J.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Schaller, R. D.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Scholes, G. D.

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Shyue, J. J.

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Song, W. S.

Su, W. F.

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Swihart, M. T.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Talapin, D. V.

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

Tan, F. R.

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

Tan, H. R.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Tang, A. W.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Tang, Z. Y.

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

Tao, A. R.

S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
[CrossRef]

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

Teng, F.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Wang, X.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Wang, X. L.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

Wang, Y.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Wang, Y. S.

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

Wang, Z. G.

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

Wang, Z. M.

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Xiong, S.

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

Xu, J.

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

Xu, Q. H.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Xue, J. G.

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

Yang, C. H.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Yang, H.

Yang, J.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Yang, J. H.

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

Yang, Y.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Yao, H. B.

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Ye, C.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Ye, H. H.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Yi, L. X.

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

Yin, Y. D.

Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012).
[CrossRef] [PubMed]

You, J. B.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Yu, S. H.

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Zhang, F. J.

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Zhang, J.

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

Zhang, X. W.

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Zhao, N.

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

Zhou, B.

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Zhou, R. J.

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013).
[CrossRef]

Adv. Mater. (1)

S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010).
[CrossRef]

A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010).
[CrossRef]

Chem. Mater. (1)

S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012).
[CrossRef]

Chem. Soc. Rev. (1)

Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012).
[CrossRef] [PubMed]

CrystEngComm (1)

L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010).
[CrossRef]

J. Am. Chem. Soc. (5)

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012).
[CrossRef] [PubMed]

W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008).
[CrossRef] [PubMed]

S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011).
[CrossRef] [PubMed]

M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011).
[CrossRef] [PubMed]

I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008).
[CrossRef]

J. Mater. Chem. (1)

F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012).
[CrossRef]

J. Mater. Chem. A (1)

H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012).
[CrossRef]

Langmuir (1)

H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013).
[CrossRef] [PubMed]

Nano Today (1)

L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010).
[CrossRef]

Nanotechnology (1)

F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011).
[CrossRef] [PubMed]

Nature (1)

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Opt. Mater. Express (3)

Phys. Rev. Lett. (1)

L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003).
[CrossRef] [PubMed]

Science (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of Cu1.94S nanocrystals, and the bottom lines are the standard diffraction lines of monoclinic Cu1.94S (JCPDS. No 23-0959).

Fig. 2
Fig. 2

(a) TEM image and (b) size distribution histogram of Cu1.94S nanocrystals.

Fig. 3
Fig. 3

XRD patterns of Cu1.94S-ZnS heterostructured nanocrystals with the standard lines of monoclinic Cu1.94S (JCPDS no. 23-0959) and wurtzite ZnS (JCPDS no. 79-2204) at the bottom.

Fig. 4
Fig. 4

Typical TEM images of the Cu1.94S-ZnS nanocrystals obtained at different reaction time: (a) 120 min; (b) 180 min; (c) 270 min; (d) A typical HRTEM image; (e)Size evolution of the “head” and “stick” of the matchstick-like as a function of reaction time.

Fig. 5
Fig. 5

UV-Vis-NIR absorption spectra of Cu1.94S and Cu1.94S-ZnS heterostructured nanocrystals dispersed in chloroform, and the inset shows the absorption spectra on the energy scale.

Fig. 6
Fig. 6

(a) UV-Vis-NIR absorption spectra of Cu1.94S-ZnS heterostructured nanocrystals at different reaction time, and the inset shows the absorption spectra on the energy scale; (b) the relationship between the LSPRs peaks and the growth time of Cu1.94S-ZnS heterostructured nanocrystals.

Metrics