Abstract

We report on the effect of confinement barriers on the performance of InAs/InGaAs sub-monolayer quantum dot infrared photodetectors. Two samples with different AlxGa1-xAs barrier compositions (x = 0.07 for sample A and x = 0.20 for sample B) were grown with four-stacks of sub-monolayer quantum dot. Sample A had a peak response at ~7.8 μm, whereas sample B demonstrated three peaks at ~3.5, ~5, and ~7.0 μm with the intensity of the peaks strongly dependent on the applied bias. At 77 K, sample A and B had a detectivity of 1.2 × 1011 cm.Hz1/2/W (Vb = −0.4 V bias) and 5.4 × 1011 cm.Hz1/2/W (Vb = −1.5 V bias), respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
    [CrossRef]
  2. V. Ryzhii, “The theory of quantum-dot infrared photodetectors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
    [CrossRef]
  3. S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” J. Phys. D Appl. Phys.38(13), 2142–2150 (2005).
    [CrossRef]
  4. J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys.91(7), 4590–4594 (2002).
    [CrossRef]
  5. H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
    [CrossRef]
  6. H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
    [CrossRef]
  7. S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
    [CrossRef]
  8. A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
    [CrossRef]
  9. G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
    [CrossRef]
  10. G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
    [CrossRef]
  11. A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
    [CrossRef]
  12. G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
    [CrossRef]
  13. J. C. Cambell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007).
    [CrossRef]
  14. P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
    [CrossRef]
  15. J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
    [CrossRef]
  16. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
    [CrossRef]
  17. S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
    [CrossRef]
  18. Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
    [CrossRef]
  19. T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
    [CrossRef]
  20. T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
    [CrossRef]
  21. T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
    [CrossRef]
  22. D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
    [CrossRef]
  23. J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
    [CrossRef]
  24. S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
    [CrossRef]
  25. A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
    [CrossRef]
  26. Y. Huang and C. Lien, “Strong Stark effect of the intersubband transitions in the three coupled quantum well: Application to voltage-tunable midinfrared photodetectors,” J. Appl. Phys.78(4), 2700–2706 (1995).
    [CrossRef]
  27. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
    [CrossRef] [PubMed]

2013

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

2012

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

2011

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

2009

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

2008

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

2007

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

J. C. Cambell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007).
[CrossRef]

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

2006

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

2005

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” J. Phys. D Appl. Phys.38(13), 2142–2150 (2005).
[CrossRef]

2004

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

2003

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

2002

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys.91(7), 4590–4594 (2002).
[CrossRef]

2000

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

1999

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

1996

V. Ryzhii, “The theory of quantum-dot infrared photodetectors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

1995

Y. Huang and C. Lien, “Strong Stark effect of the intersubband transitions in the three coupled quantum well: Application to voltage-tunable midinfrared photodetectors,” J. Appl. Phys.78(4), 2700–2706 (1995).
[CrossRef]

Adhikary, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

Aivaliotis, P.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

Alden Angeles, D. E.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

Alferov, Z. I.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Al-Khafaji, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Allen, J. W.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Allen, M. S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Apalkov, V.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Arakawa, Y.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Ariyawansa, G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Aytac, Y.

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

Bandara, S. V.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Barker, J. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Barve, A.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

Barve, A. V.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Bedarev, D. A.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Bhattacharya, P.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Bimberg, D.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Birkedal, D.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Blazejewski, E. R.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Bornholdt, C.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Cambell, J. C.

J. C. Cambell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007).
[CrossRef]

Campbell, C.

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

Chakrabarti, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

Chang, Y.-C.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Clark, J. C.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Cockburn, J. W.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

Cullis, A. G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Dahne, M.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

David, J. P. R.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Eaves, L.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

Ebe, H.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Eisele, H.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Finley, J. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Fiol, G.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Fiorante, G. R. C.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Fry, P. W.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Fu, L.

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

Gautam, N.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

Germann, T. D.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Godoy, S. E.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Gunapala, S. D.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Haisler, V. A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Halder, N.

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

Henini, M.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

Hill, C. J.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Hill, G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Hoffmann, A.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

Hopfer, F.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Hopkinson, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Huang, G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Huang, Y.

Y. Huang and C. Lien, “Strong Stark effect of the intersubband transitions in the three coupled quantum well: Application to voltage-tunable midinfrared photodetectors,” J. Appl. Phys.78(4), 2700–2706 (1995).
[CrossRef]

Hvam, J. M.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Itskevich, I. E.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Jagadish, C.

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

Jang, W.-Y.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Jolley, G.

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

Kanjilal, A.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Keo, S. A.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Kießling, F.

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Kim, E.-T.

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

Kim, J. O.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

Kita, T.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Klein, B.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Kop'ev, P. S.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Kovsh, A. R.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Krestnikov, I. L.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Krishna, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” J. Phys. D Appl. Phys.38(13), 2142–2150 (2005).
[CrossRef]

Kuntz, M.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Larkin, I. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Ledentsov, N. N.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Lee, C. P.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

Lee, S. J.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Lehmann, M.

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Lenz, A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Lien, C.

Y. Huang and C. Lien, “Strong Stark effect of the intersubband transitions in the three coupled quantum well: Application to voltage-tunable midinfrared photodetectors,” J. Appl. Phys.78(4), 2700–2706 (1995).
[CrossRef]

Lim, H.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Ling, H. S.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

Liu, H. Y.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

Liu, J. K.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Liu, Y. M.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Livshits, D. A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Lo, M. C.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

Madhukar, A.

J. C. Cambell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007).
[CrossRef]

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

Main, P. C.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

Maksym, P. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Maleev, N. A.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Matsik, S. G.

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Maximov, M. V.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Meesala, S.

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Mi, K.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Mikhrin, S. S.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Montaya, J.

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Montoya, J.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Movaghar, B.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Mowbray, D. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Mumolo, J. M.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Mutig, A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Nakata, Y.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Niermann, T.

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Noh, S. K.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

O’Reilly, E. P.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Patane, A.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

Perera, A. G. U.

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

Phillips, J.

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys.91(7), 4590–4594 (2002).
[CrossRef]

Pohl, U. W.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Polimeni, A.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

Potschke, K.

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Rafol, B.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Razeghi, M.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Rotter, T.

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Ryzhii, V.

V. Ryzhii, “The theory of quantum-dot infrared photodetectors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

Sadowski, J.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Schulze, J.-H.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Sengupta, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

Shao, J.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Sharma, Y.

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

Sharma, Y. D.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

Shchukin, V. A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Shernyakov, Y. M.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Shirazi, M. A.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Sills, T.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Skolnick, M. S.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Soshnikov, I. P.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Steer, M. J.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

Stintz, A.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

Stock, E.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Strittmatter, A.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Sugawara, M.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Switaiski, T.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

Szafraniec, J.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Tamura, N.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Tan, H. H.

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

Tarasov, I. S.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Ting, D. Z.-Y.

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

Tsao, S.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Tsatsul'nikov, A. F.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Ustinov, V. M.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Vandervelde, T. E.

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

Volovik, B. V.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Wada, O.

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

Wang, S. Y.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

Warming, T.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Wilson, L. R.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Woggon, U.

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

Xu, Z. C.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Yang, K. T.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Ye, Z.

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

Zamiri, M.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

Zhang, W.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Zhao, Z. Y.

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

Zhukov, A. E.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

Zibik, E. A.

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

Appl. Phys. Lett.

E.-T. Kim, A. Madhukar, Z. Ye, and C. Campbell, “High detectivity InAs quantum dot infrared photodetectors,” Appl. Phys. Lett.84(17), 3277–3279 (2004).
[CrossRef]

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008).
[CrossRef]

S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, and A. G. U. Perera, “High-performance, long-wave (~10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Appl. Phys. Lett.99(18), 181102 (2011).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Effects of well thickness on the spectral properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.92(19), 193507 (2008).
[CrossRef]

G. Ariyawansa, V. Apalkov, A. G. U. Perera, S. G. Matsik, G. Huang, and P. Bhattacharya, “Bias-selectable tricolor quantum dot infrared photodetector for atmospheric windows,” Appl. Phys. Lett.92(11), 111104 (2008).
[CrossRef]

P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, “Enhancing the dot density in quantum dot infrared photodetectors via the incorporation of antimony,” Appl. Phys. Lett.91(1), 013503 (2007).
[CrossRef]

J. Shao, T. E. Vandervelde, A. Barve, A. Stintz, and S. Krishna, “Increased normal incidence photocurrent in quantum dot infrared Photodetectors,” Appl. Phys. Lett.101(24), 241114 (2012).
[CrossRef]

G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Influence of quantum well and barrier composition on the spectral behaviorof InGaAs quantum dots-in-a-well infrared photodetectors,” Appl. Phys. Lett.91(17), 173508 (2007).
[CrossRef]

Z. C. Xu, D. Birkedal, J. M. Hvam, Z. Y. Zhao, Y. M. Liu, K. T. Yang, A. Kanjilal, and J. Sadowski, “Structure and optical anisotrophy of vertically correlated submonolayer InAs/GaAs quantum dots,” Appl. Phys. Lett.82(22), 3859–3861 (2003).
[CrossRef]

D. Z.-Y. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009).
[CrossRef]

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett.100(19), 191111 (2012).
[CrossRef]

T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett.88(21), 211106 (2006).
[CrossRef]

IEEE J. Quantum Electron.

A. V. Barve, S. Sengupta, J. O. Kim, J. Montoya, B. Klein, M. A. Shirazi, M. Zamiri, Y. D. Sharma, S. Adhikary, S. E. Godoy, W.-Y. Jang, G. R. C. Fiorante, S. Chakrabarti, and S. Krishna, “Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE J. Quantum Electron.48(10), 1243–1251 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. A. Shchukin, V. A. Haisler, T. Warming, E. Stock, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dahne, N. N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots,” IEEE J. Sel. Top. Quantum Electron.13(5), 1302–1308 (2007).
[CrossRef]

Infrared Phys. Technol.

A. V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang, S. Meesala, S. J. Lee, and S. Krishna, “High temperature operation of quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol.54(3), 215–219 (2011).
[CrossRef]

J. Appl. Phys.

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys.91(7), 4590–4594 (2002).
[CrossRef]

T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T. D. Germann, K. Potschke, A. Strittmatter, and U. W. Pohl, “Atomic structure of closely stacked InAs submonolayer depositions in GaAs,” J. Appl. Phys.112(8), 083505 (2012).
[CrossRef]

Y. Huang and C. Lien, “Strong Stark effect of the intersubband transitions in the three coupled quantum well: Application to voltage-tunable midinfrared photodetectors,” J. Appl. Phys.78(4), 2700–2706 (1995).
[CrossRef]

J. Phys. D Appl. Phys.

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” J. Phys. D Appl. Phys.38(13), 2142–2150 (2005).
[CrossRef]

Phys. Rev. B

T. Switaiski, U. Woggon, D. E. Alden Angeles, A. Hoffmann, J.-H. Schulze, T. D. Germann, A. Strittmatter, and U. W. Pohl, “Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots,” Phys. Rev. B88(3), 035314 (2013).
[CrossRef]

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B59(7), 5064–5068 (1999).
[CrossRef]

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory,” Phys. Rev. B72(8), 085332 (2005).
[CrossRef]

Phys. Rev. Lett.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots,” Phys. Rev. Lett.84(4), 733–736 (2000).
[CrossRef] [PubMed]

Proc. IEEE

J. C. Cambell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007).
[CrossRef]

Semicond. Sci. Technol.

S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, Y. M. Shernyakov, I. P. Soshnikov, D. A. Livshits, I. S. Tarasov, D. A. Bedarev, B. V. Volovik, M. V. Maximov, A. F. Tsatsul'nikov, N. N. Ledentsov, P. S. Kop'ev, D. Bimberg, and Z. I. Alferov, “0.94 μm diode laser based on Stranski-Krastanow and sub-monolayer quantum dots,” Semicond. Sci. Technol.15(11), 1061–1064 (2000).
[CrossRef]

V. Ryzhii, “The theory of quantum-dot infrared photodetectors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic view of the SML-DWELL device structure. Sample A and B were fabricated with a 410 × 410 µm2 mesa with the circular aperture of 300 µm diameter for normal incidence. The active region consists of 10 periods of 4 stacks of 0.3 ML InAs SML-QDs layer. (b) Diagrams of the active region for sample A and B are shown in the upper (black) and lower (red) parts. InAs/InGaAs SML-QDs are placed between the GaAs QW layer and the AlxGa1-xAs barrier, which is composed of a 2 nm thick Al0.22Ga0.78As layer and a 48 nm thick Al0.07Ga0.93As layer for sample A and a 50 nm thick Al0.20Ga0.80As layer for sample B. (c) Room temperature photoluminescence (PL) data obtained with He-Ne laser excitation are plotted for sample A and B. The PL peak wavelength of sample A is blue-shifted by about 11 nm as compared with sample B, which results from the presence of Al0.22Ga0.78As confinement enhancing barrier. (d) and (e) Schematic of conduction band diagram of sample A and B, respectively. The energy levels in the DWELL structure (dashed lines) can be estimated with the PL and spectral response data.

Fig. 2
Fig. 2

(a) Spectral response of sample A as a function of applied bias at 77 K. The peak wavelengths of sample A is ~7.8 μm with a narrow bandwidth (Δλ/λp), which is related the bound-to-bound transition. (b) Spectral response of sample B under −0.5 V. Two peaks are observed at ~5 and 7 μm. The response at ~3.5 μm is also visible at low bias (c) and high bias (d).

Fig. 3
Fig. 3

Contour plot of the normalized SR of sample B as a function of the wavelength with the applied bias at 77 K. At low bias, two peaks are observed at ~5 μm and ~7 μm with narrow bandwidth. Both peaks are probably due to the transition between the ground state of SML-QD and the first (~7 μm) / second (~5 μm) excited state of the QW. These peaks are shifted to longer wavelengths as the applied bias increases, which results from the quantum confined stark effect. Moreover, another peak is visible at ~3.5 μm as shown in the inset to the figure.

Fig. 4
Fig. 4

(a) Dark current of sample A and B at 77 K. Dark current of sample B is lower than sample A by over 3 orders of magnitude because of the high Al composition in AlGaAs barrier as current blocking layer. (b) Detectivity of both samples at 77 K.

Metrics