Abstract

Measured reflection spectra from elytra of C. aurigans scarabs are reported for wavelengths between 300 and 1100 nm. They show a broad reflection band for wavelengths from 525 to 950 nm with a ripple structure consisting of a sequence of maxima and minima reflection values superimposed on a mean value of around 30% of the reflection band. To our knowledge, this is one the first reports on measurements of a natural broad band reflector in which the spectral features of the band are completely contained in the measuring range, including the mentioned ripple structure. What seems to be a multilayer structure of the cuticle of the C. aurigans is displayed from SEM analysis showing a layer’s thickness dependence with the perpendicular depth through the procuticle. Additional optical measurements are carried out to establish the polarization of the reflected light which is circularly polarized to the left, with lower contributions of diffuse and non-coherent light. These findings require an interpretation of the structure displayed by the SEM images, in terms of a Bouligand-type (twisted helical) structure characterized by a depth-dependent spatial period distribution more complex than those previously reported in the literature for others biological systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible light reflection spectra from cuticle layered materials

Cristian Campos-Fernández, Daniel E. Azofeifa, Marcela Hernández-Jiménez, Adams Ruiz-Ruiz, and William E. Vargas
Opt. Mater. Express 1(1) 85-100 (2011)

Evidence for a dispersion relation of optical modes in the cuticle of the scarab beetle Cotinis mutabilis

A. Mendoza-Galván, E. Muñoz-Pineda, K. Järrendahl, and H. Arwin
Opt. Mater. Express 4(12) 2484-2496 (2014)

Modeling of light interaction with exoskeletons of scarab beetles

Sergiy Valyukh and Kenneth Järrendahl
Appl. Opt. 56(9) 2510-2516 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Strutt, “Iridescent colours in nature from the stand-point of physical optics,” J. Sci. Instrum. 7(2), 34–40 (1930).
    [Crossref]
  2. R. Hooke, Micrographia (Bibliolife, Charleston, 2008) pp. 321–329.
  3. I. Newton, Optica (Alfaguara, Madrid, 1977) pp. 222–224.
  4. J. W. Strutt, “On the optical character of some brilliant animal colours,” Philos. Mag. 6, 98–111 (1919).
  5. N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
    [Crossref] [PubMed]
  6. C. Campos-Fernández, D. E. Azofeifa, M. Hernández-Jiménez, A. Ruiz-Ruiz, and W. E. Vargas, “Visible light reflection spectra from cuticle layered materials,” Opt. Mater. Express 1(1), 85–100 (2011).
    [Crossref]
  7. J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
    [Crossref] [PubMed]
  8. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
    [Crossref] [PubMed]
  9. M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
    [Crossref] [PubMed]
  10. J. N. Lythgoe and J. Shand, “The structural basis for iridescent colour changes in dermal and corneal iridophores in fish,” J. Exp. Biol. 141, 313–325 (1989).
  11. J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
    [Crossref] [PubMed]
  12. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
    [Crossref] [PubMed]
  13. S. Kinoshita, Structural Colors in the Realm of Nature (Word Scientific, 2008).
  14. K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
    [Crossref]
  15. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
    [Crossref] [PubMed]
  16. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
    [Crossref] [PubMed]
  17. J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
    [Crossref]
  18. M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
    [Crossref] [PubMed]
  19. D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).
  20. L. W. Rothschild and K. Jordan, “Six new species of Plusiotis and one new anoplostethus,” Novit. Zool. 1, 504–507 (1894).
  21. M. A. Morón, “The beetles of the world,” Sci. Nat. Venette 10, 49–194 (1990).
  22. http://www.inbio.ac.cr/papers/Plusiotis/Pauri/PauriMap.html
  23. L. Fernández del Río, H. Arwin, and K. Jarrendahl “Polarizing properties and structural characteristics of the cuticle of the scarab beetle Chrysina gloriosa” To be published in Thin Solid Films.
  24. A. Solovchenko and M. Merzlyak, “Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit,” Photochem. Photobiol. Sci. 2(8), 861–866 (2003).
    [Crossref] [PubMed]
  25. D. Steinmüller and M. Tevini, “Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants,” Planta 164(4), 557–564 (1985).
    [Crossref] [PubMed]
  26. D. M. Gates, H. J. Keegan, J. C. Schleter, and V. C. Weidner, “Spectral properties of plants,” Appl. Opt. 4(1), 11–20 (1965).
  27. M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).
  28. R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
    [Crossref]
  29. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
    [Crossref] [PubMed]
  30. R. W. G. Hunt and M. R. Pointer, Measuring Colour (Wiley, 2011).
  31. R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).
  32. S. O. Andersen, “Insect cuticular sclerotization: A review,” Insect Biochem. Mol. Biol. 40(3), 166–178 (2010).
    [Crossref] [PubMed]
  33. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
    [Crossref] [PubMed]
  34. E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
    [Crossref]
  35. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [Crossref] [PubMed]
  36. J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. Lond. 100(3), 585–596 (2010).
    [Crossref]
  37. A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
    [Crossref]
  38. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci. 178(1051), 205–225 (1971).
    [Crossref] [PubMed]
  39. M. Locke, “The cuticle and wax secretion in Calpodes ethlius (Lepidoptera, Hesperidae),” Q. J. Microsc. Sci. 101, 333–338 (1960).
  40. Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell 4(2), 189–217 (1972).
    [Crossref] [PubMed]
  41. D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
    [Crossref]
  42. D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).
  43. G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
    [Crossref]
  44. Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
    [Crossref]
  45. H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
    [Crossref]
  46. S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur Phys J E Soft Matter 12(4), 515–521 (2003).
    [Crossref] [PubMed]
  47. P. Brady and M. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
    [Crossref] [PubMed]
  48. E. J. Warrant, “Polarisation vision: beetles see circularly polarised light,” Curr. Biol. 20(14), R610–R612 (2010).
    [Crossref] [PubMed]
  49. M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
    [Crossref] [PubMed]
  50. J. A. Endler, “Disruptive and cryptic coloration,” Proc. Biol. Sci. 273(1600), 2425–2426 (2006).
    [Crossref] [PubMed]
  51. J. A. Endler, “Natural selection on color patterns in Poecilia reticulata,” Evolution 34(1), 76–91 (1980).
    [Crossref]
  52. D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
    [Crossref] [PubMed]
  53. R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
    [Crossref] [PubMed]
  54. R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
    [Crossref]
  55. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
    [Crossref] [PubMed]

2014 (1)

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

2013 (3)

N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
[Crossref] [PubMed]

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

2012 (4)

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

2011 (4)

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
[Crossref]

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

C. Campos-Fernández, D. E. Azofeifa, M. Hernández-Jiménez, A. Ruiz-Ruiz, and W. E. Vargas, “Visible light reflection spectra from cuticle layered materials,” Opt. Mater. Express 1(1), 85–100 (2011).
[Crossref]

2010 (5)

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

S. O. Andersen, “Insect cuticular sclerotization: A review,” Insect Biochem. Mol. Biol. 40(3), 166–178 (2010).
[Crossref] [PubMed]

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. Lond. 100(3), 585–596 (2010).
[Crossref]

P. Brady and M. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[Crossref] [PubMed]

E. J. Warrant, “Polarisation vision: beetles see circularly polarised light,” Curr. Biol. 20(14), R610–R612 (2010).
[Crossref] [PubMed]

2009 (2)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

2008 (1)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

2007 (3)

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

2006 (3)

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

J. A. Endler, “Disruptive and cryptic coloration,” Proc. Biol. Sci. 273(1600), 2425–2426 (2006).
[Crossref] [PubMed]

D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45(30), 7944–7950 (2006).
[Crossref] [PubMed]

2005 (1)

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

2003 (2)

A. Solovchenko and M. Merzlyak, “Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit,” Photochem. Photobiol. Sci. 2(8), 861–866 (2003).
[Crossref] [PubMed]

S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur Phys J E Soft Matter 12(4), 515–521 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
[Crossref]

1999 (2)

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

1997 (1)

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

1990 (1)

M. A. Morón, “The beetles of the world,” Sci. Nat. Venette 10, 49–194 (1990).

1989 (1)

J. N. Lythgoe and J. Shand, “The structural basis for iridescent colour changes in dermal and corneal iridophores in fish,” J. Exp. Biol. 141, 313–325 (1989).

1985 (1)

D. Steinmüller and M. Tevini, “Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants,” Planta 164(4), 557–564 (1985).
[Crossref] [PubMed]

1983 (1)

R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
[Crossref]

1980 (1)

J. A. Endler, “Natural selection on color patterns in Poecilia reticulata,” Evolution 34(1), 76–91 (1980).
[Crossref]

1972 (1)

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell 4(2), 189–217 (1972).
[Crossref] [PubMed]

1971 (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci. 178(1051), 205–225 (1971).
[Crossref] [PubMed]

1969 (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[Crossref] [PubMed]

1965 (1)

1960 (1)

M. Locke, “The cuticle and wax secretion in Calpodes ethlius (Lepidoptera, Hesperidae),” Q. J. Microsc. Sci. 101, 333–338 (1960).

1930 (1)

R. J. Strutt, “Iridescent colours in nature from the stand-point of physical optics,” J. Sci. Instrum. 7(2), 34–40 (1930).
[Crossref]

1919 (1)

J. W. Strutt, “On the optical character of some brilliant animal colours,” Philos. Mag. 6, 98–111 (1919).

1911 (1)

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

1894 (1)

L. W. Rothschild and K. Jordan, “Six new species of Plusiotis and one new anoplostethus,” Novit. Zool. 1, 504–507 (1894).

Agez, G.

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
[Crossref]

Ala-Laurila, P.

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

Andersen, S. O.

S. O. Andersen, “Insect cuticular sclerotization: A review,” Insect Biochem. Mol. Biol. 40(3), 166–178 (2010).
[Crossref] [PubMed]

Arce-Marenco, L.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Azofeifa, D. E.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

C. Campos-Fernández, D. E. Azofeifa, M. Hernández-Jiménez, A. Ruiz-Ruiz, and W. E. Vargas, “Visible light reflection spectra from cuticle layered materials,” Opt. Mater. Express 1(1), 85–100 (2011).
[Crossref]

Barboza-Aguilar, C.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Bartl, M. H.

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Baumberg, J. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Bird, R. E.

R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
[Crossref]

Biró, L. P.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Bitar, R.

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
[Crossref]

Blahó, M.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Botha, A.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

Bouligand, Y.

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell 4(2), 189–217 (1972).
[Crossref] [PubMed]

Brady, P.

P. Brady and M. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[Crossref] [PubMed]

Brink, D. J.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

Burdekin, O.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Campos-Fernández, C.

Casteels, J.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Caveney, S.

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci. 178(1051), 205–225 (1971).
[Crossref] [PubMed]

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[Crossref] [PubMed]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Colomer, J. F.

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

Creedy, T. J.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Cummings, M.

P. Brady and M. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[Crossref] [PubMed]

Douglas, R. H.

R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
[Crossref]

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Dulai, K. S.

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Egri, A.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Endler, J. A.

J. A. Endler, “Disruptive and cryptic coloration,” Proc. Biol. Sci. 273(1600), 2425–2426 (2006).
[Crossref] [PubMed]

J. A. Endler, “Natural selection on color patterns in Poecilia reticulata,” Evolution 34(1), 76–91 (1980).
[Crossref]

Enoch, S.

Ertz, D.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Faden, R. B.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Fan, T.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Faris, S. M.

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Galusha, J. W.

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

García-Aguilar, I.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Gardner, J. S.

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Gates, D. M.

Glover, B. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Goldstein, D. H.

Gralak, B.

Greven, H.

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

Hariyama, T.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

Hegedüs, R.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Hernández, A.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Hernández-Jiménez, M.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

C. Campos-Fernández, D. E. Azofeifa, M. Hernández-Jiménez, A. Ruiz-Ruiz, and W. E. Vargas, “Visible light reflection spectra from cuticle layered materials,” Opt. Mater. Express 1(1), 85–100 (2011).
[Crossref]

Hodgkinson, I. J.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

Horváth, G.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Horwood, J.

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

Hulström, R. L.

R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
[Crossref]

Hunt, D. M.

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Hynninen, P. H.

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Ingram, A. L.

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

Jarrendahl, K.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Jiang, Y.

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Jocque, M.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Jordan, K.

L. W. Rothschild and K. Jordan, “Six new species of Plusiotis and one new anoplostethus,” Novit. Zool. 1, 504–507 (1894).

Jorgensen, M. R.

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

Jósvai, J.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Keegan, H. J.

Kertész, K.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Kriska, G.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Kutter, S.

S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur Phys J E Soft Matter 12(4), 515–521 (2003).
[Crossref] [PubMed]

Land, M. F.

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

Landin, J.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Leertouwer, H. L.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

Lepora, N. F.

N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
[Crossref] [PubMed]

Lewis, L. J.

R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
[Crossref]

Li, D.

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

Li, L.

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Libby, E.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Liebisch, F.

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

Lim, M. L. M.

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

Locke, M.

M. Locke, “The cuticle and wax secretion in Calpodes ethlius (Lepidoptera, Hesperidae),” Q. J. Microsc. Sci. 101, 333–338 (1960).

Lou, S.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Lousse, V.

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Luo, D. G.

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

Lythgoe, J. N.

J. N. Lythgoe and J. Shand, “The structural basis for iridescent colour changes in dermal and corneal iridophores in fish,” J. Exp. Biol. 141, 313–325 (1989).

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Merzlyak, M.

A. Solovchenko and M. Merzlyak, “Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit,” Photochem. Photobiol. Sci. 2(8), 861–866 (2003).
[Crossref] [PubMed]

Michelson, A. A.

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

Mielewczik, M.

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

Mitov, M.

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
[Crossref]

Morón, M. A.

M. A. Morón, “The beetles of the world,” Sci. Nat. Venette 10, 49–194 (1990).

Moyroud, E.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Mullineaux, C. W.

R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
[Crossref]

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Neville, A. C.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[Crossref] [PubMed]

Nuñez-Miño, J. M.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Partridge, J. C.

R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
[Crossref]

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

Prescott, T. J.

N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
[Crossref] [PubMed]

Prinsloo, L. C.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

Pye, J. D.

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. Lond. 100(3), 585–596 (2010).
[Crossref]

Rassart, M.

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Reed, A.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Richey, L. R.

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

Robacker, D. C.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).

Rothschild, L. W.

L. W. Rothschild and K. Jordan, “Six new species of Plusiotis and one new anoplostethus,” Novit. Zool. 1, 504–507 (1894).

Rowland, A. V.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Rudall, P. J.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Ruiz-Ruiz, A.

Sarrazin, M.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Schleter, J. C.

Seago, A.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).

Shand, J.

J. N. Lythgoe and J. Shand, “The structural basis for iridescent colour changes in dermal and corneal iridophores in fish,” J. Exp. Biol. 141, 313–325 (1989).

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Solís, A.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

Solovchenko, A.

A. Solovchenko and M. Merzlyak, “Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit,” Photochem. Photobiol. Sci. 2(8), 861–866 (2003).
[Crossref] [PubMed]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Stavenga, D. G.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

Steiner, U.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Steinmüller, D.

D. Steinmüller and M. Tevini, “Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants,” Planta 164(4), 557–564 (1985).
[Crossref] [PubMed]

Strutt, J. W.

J. W. Strutt, “On the optical character of some brilliant animal colours,” Philos. Mag. 6, 98–111 (1919).

Strutt, R. J.

R. J. Strutt, “Iridescent colours in nature from the stand-point of physical optics,” J. Sci. Instrum. 7(2), 34–40 (1930).
[Crossref]

Tayeb, G.

Tevini, M.

D. Steinmüller and M. Tevini, “Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants,” Planta 164(4), 557–564 (1985).
[Crossref] [PubMed]

Thomas, D. B.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).

Tóth, M.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

van der Berg, N. G.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

Vanhove, M. P. M.

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

Vargas, W. E.

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

C. Campos-Fernández, D. E. Azofeifa, M. Hernández-Jiménez, A. Ruiz-Ruiz, and W. E. Vargas, “Visible light reflection spectra from cuticle layered materials,” Opt. Mater. Express 1(1), 85–100 (2011).
[Crossref]

Verschure, P.

N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
[Crossref] [PubMed]

Vértesy, Z.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Vigneron, J. P.

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Vignolini, S.

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Vithana, H.

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Walter, A.

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

Warner, M.

S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur Phys J E Soft Matter 12(4), 515–521 (2003).
[Crossref] [PubMed]

Warrant, E. J.

E. J. Warrant, “Polarisation vision: beetles see circularly polarised light,” Curr. Biol. 20(14), R610–R612 (2010).
[Crossref] [PubMed]

Weidner, V. C.

Wilts, B. D.

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

Yau, K. W.

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

Yu, K.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Yue, W. W.

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

Zhang, D.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Am. Nat. (1)

P. Brady and M. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175(5), 614–620 (2010).
[Crossref] [PubMed]

American Entomologist (1)

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” American Entomologist 53, 224–230 (2007).

Appl. Opt. (2)

Bioinspir. Biomim. (1)

N. F. Lepora, P. Verschure, and T. J. Prescott, “The state of the art in biomimetics,” Bioinspir. Biomim. 8(1), 013001 (2013).
[Crossref] [PubMed]

Biol. J. Linn. Soc. Lond. (1)

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. Lond. 100(3), 585–596 (2010).
[Crossref]

Biol. Rev. Camb. Philos. Soc. (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. Camb. Philos. Soc. 44(4), 531–562 (1969).
[Crossref] [PubMed]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99(7), 1935–1962 (1999).
[Crossref] [PubMed]

Curr. Biol. (1)

E. J. Warrant, “Polarisation vision: beetles see circularly polarised light,” Curr. Biol. 20(14), R610–R612 (2010).
[Crossref] [PubMed]

Entomologie Heute (1)

M. Mielewczik, F. Liebisch, A. Walter, and H. Greven, “Near-infrared (NIR)-reflectance in insects – Phenetic studies of 181 species,” Entomologie Heute 24, 183–215 (2012).

Eur Phys J E Soft Matter (1)

S. Kutter and M. Warner, “Reflectivity of cholesteric liquid crystals with spatially varying pitch,” Eur Phys J E Soft Matter 12(4), 515–521 (2003).
[Crossref] [PubMed]

Evolution (1)

J. A. Endler, “Natural selection on color patterns in Poecilia reticulata,” Evolution 34(1), 76–91 (1980).
[Crossref]

Insect Biochem. Mol. Biol. (1)

S. O. Andersen, “Insect cuticular sclerotization: A review,” Insect Biochem. Mol. Biol. 40(3), 166–178 (2010).
[Crossref] [PubMed]

J. Exp. Biol. (1)

J. N. Lythgoe and J. Shand, “The structural basis for iridescent colour changes in dermal and corneal iridophores in fish,” J. Exp. Biol. 141, 313–325 (1989).

J. Insect Sci. (1)

M. Jocque, M. P. M. Vanhove, T. J. Creedy, O. Burdekin, J. M. Nuñez-Miño, and J. Casteels, “Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?” J. Insect Sci. 13(21), 21 (2013).
[Crossref] [PubMed]

J. Mater. Chem. (1)

J. W. Galusha, L. R. Richey, M. R. Jorgensen, J. S. Gardner, and M. H. Bartl, “Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route,” J. Mater. Chem. 20(7), 1277–1284 (2010).
[Crossref]

J. Opt. (1)

E. Libby, D. E. Azofeifa, M. Hernández-Jiménez, C. Barboza-Aguilar, A. Solís, I. García-Aguilar, L. Arce-Marenco, A. Hernández, and W. E. Vargas, “Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light,” J. Opt. 16(8), 082001 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D Appl. Phys. 40(7), 2189–2196 (2007).
[Crossref]

J. Sci. Instrum. (1)

R. J. Strutt, “Iridescent colours in nature from the stand-point of physical optics,” J. Sci. Instrum. 7(2), 34–40 (1930).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Z. Lu, L. Li, H. Vithana, Y. Jiang, and S. M. Faris, “Optical properties of single layer non-absorptive broad-band CLC polarizers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 301(1), 237–248 (1997).
[Crossref]

Novit. Zool. (1)

L. W. Rothschild and K. Jordan, “Six new species of Plusiotis and one new anoplostethus,” Novit. Zool. 1, 504–507 (1894).

Opt. Express (1)

Opt. Mater. Express (1)

Philos. Mag. (3)

J. W. Strutt, “On the optical character of some brilliant animal colours,” Philos. Mag. 6, 98–111 (1919).

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

H. Arwin, R. Magnusson, J. Landin, and K. Jarrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Philos. Trans. R. Soc. Lond. (1)

R. H. Douglas, C. W. Mullineaux, and J. C. Partridge, “Longwave sensitivity in deep-sea stomiid dragon fish with far red bioluminescence; evidence for a dietary origin of the chlorophyll-derived photosensitizer of Malacosteus niger,” Philos. Trans. R. Soc. Lond. 355(1401), 1269–1272 (2000).
[Crossref]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (1)

A. Solovchenko and M. Merzlyak, “Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit,” Photochem. Photobiol. Sci. 2(8), 861–866 (2003).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(5), 050904 (2008).
[Crossref] [PubMed]

J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse, “Structural origin of the colored reflections from the black-billed magpie feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021914 (2006).
[Crossref] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 011906 (2005).
[Crossref] [PubMed]

Physiol. Behav. (1)

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. P. Biró, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105(4), 1067–1075 (2012).
[Crossref] [PubMed]

Planta (1)

D. Steinmüller and M. Tevini, “Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants,” Planta 164(4), 557–564 (1985).
[Crossref] [PubMed]

Proc. Biol. Sci. (2)

M. F. Land, J. Horwood, M. L. M. Lim, and D. Li, “Optics of the ultraviolet reflecting scales of a jumping spider,” Proc. Biol. Sci. 274(1618), 1583–1589 (2007).
[Crossref] [PubMed]

J. A. Endler, “Disruptive and cryptic coloration,” Proc. Biol. Sci. 273(1600), 2425–2426 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, “Pointillist structural color in Pollia fruit,” Proc. Natl. Acad. Sci. U.S.A. 109(39), 15712–15715 (2012).
[Crossref] [PubMed]

Proc. R. Soc. Lond. B Biol. Sci. (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. Lond. B Biol. Sci. 178(1051), 205–225 (1971).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Q. J. Microsc. Sci. (1)

M. Locke, “The cuticle and wax secretion in Calpodes ethlius (Lepidoptera, Hesperidae),” Q. J. Microsc. Sci. 101, 333–338 (1960).

Sci. Nat. Venette (1)

M. A. Morón, “The beetles of the world,” Sci. Nat. Venette 10, 49–194 (1990).

Science (2)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

D. G. Luo, W. W. Yue, P. Ala-Laurila, and K. W. Yau, “Activation of visual pigments by light and heat,” Science 332(6035), 1307–1312 (2011).
[Crossref] [PubMed]

Soft Matter (1)

G. Agez, R. Bitar, and M. Mitov, “Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations,” Soft Matter 7(6), 2841–2847 (2011).
[Crossref]

Sol. Energy (1)

R. E. Bird, R. L. Hulström, and L. J. Lewis, “Terrestrial solar spectra data sets,” Sol. Energy 30(6), 563–573 (1983).
[Crossref]

Tissue Cell (1)

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell 4(2), 189–217 (1972).
[Crossref] [PubMed]

Vision Res. (1)

R. H. Douglas, J. C. Partridge, K. S. Dulai, D. M. Hunt, C. W. Mullineaux, and P. H. Hynninen, “Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence,” Vision Res. 39(17), 2817–2832 (1999).
[Crossref] [PubMed]

World Academy of Sciences, Engineering and Technology (1)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and A. Botha, “Broad-band chiral reflectors based on nano-structured biological materials,” World Academy of Sciences, Engineering and Technology 57, 75–79 (2009).

Other (7)

R. W. G. Hunt and M. R. Pointer, Measuring Colour (Wiley, 2011).

R. S. Hunter and R. W. Harold, The Measurement of Appearance (Wiley, 1987).

http://www.inbio.ac.cr/papers/Plusiotis/Pauri/PauriMap.html

L. Fernández del Río, H. Arwin, and K. Jarrendahl “Polarizing properties and structural characteristics of the cuticle of the scarab beetle Chrysina gloriosa” To be published in Thin Solid Films.

S. Kinoshita, Structural Colors in the Realm of Nature (Word Scientific, 2008).

R. Hooke, Micrographia (Bibliolife, Charleston, 2008) pp. 321–329.

I. Newton, Optica (Alfaguara, Madrid, 1977) pp. 222–224.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Distribution through the territory of Costa Rica of those regions, indicated by the contour defined by the blue line inside the map, where specimens of C. aurigans scarabs have been collected. (b) Chrysina aurigans scarab with labeled sections of its elytron: (1) the scuttelum, (2/3) left/right dorsal-lateral areas, and (4/5) left/right posterior-lateral sections of the elytron. The RGB values just above the point indicated by the symbol “x” are R = 210, G = 173, and B = 25. The Adobe Photoshop® tools were used to determine these R, G, and B values, by assuming a D65 illuminant.
Fig. 2
Fig. 2 Close-up view of the surface of (a) C. aurigans´ and (b) C. aurora’s elytra covering a surface of 100x100 μm2 in both cases. The reflective layers of C. aurigans shows a locally rather flat surface structured from close packed scales, while the elytron’s surface of the C. aurora shows micron sized cells well differentiated from each other.
Fig. 3
Fig. 3 SEM images of the C. aurigans’ cuticle cross section showing a sequence of about 94 thick layers through the procuticle. The white bars at left and right figures correspond to 10 and 5 μm respectively. The outer surface of the cuticle is: (a) above on the right, and (b) at the top.
Fig. 4
Fig. 4 Measured reflection spectra under normal incidence of non-polarized radiation taken when illuminating the elytron’s surface of a C. aurigans beetle at (a) its head, and (b) in section 2. The background reflection Ro from the epicuticle is shown. The thin solid lines are smoothed curves obtained from the experimental values. The colors of the squares showing the values of x, y, Y, R, G, and B are determined by the same values of these parameters.
Fig. 5
Fig. 5 (a) Integrating sphere measurements of total (Rcc + Rcd) and diffuse (Rcd) reflection when illuminating a section of the C. aurigans cuticle with normally incident non-polarized light. The Rcd spectrum corresponds to measurements taken after removal of the procuticle by grinding, and Rcc values are obtained from the difference between Rcc + Rcd and Rcd. (b) Incidence of white light on the cuticle of a C. aurigans specimen, and transmitted reddish light emerging through sutures in the ventral side of the scarab.
Fig. 6
Fig. 6 Reflection of left handed circularly polarized (LHCP) and non-LHCP light when illuminating the cuticle of a C. aurigans with diffuse light. Both spectra have been normalized to a total reflection value close to 3% at short wavelengths, which is the average value corresponding to the two spectra displayed in Fig. 4 in this spectral range. The lines display smoothed curves only for visual aid, and dots are measured values.
Fig. 7
Fig. 7 (a) Picture of C. aurigans’ scarabs taken with no circular polarizer (CP). (b and c) Photographs taken with the use of a CP for left handed and right handed circularly polarized light located between the camera and the beetle, respectively. (d) Digital subtraction of images [(b)-(c)]. For the position indicated by the symbol “x” in Fig. 1(b), the corresponding luminance (luminous reflectance) values are: La = 63 (Ya = 20.4), Lb = 79 (Yb = 35.5), Lc = 24 (Yc = 2.6), and Ld = 58 (Yd = 16.8).
Fig. 8
Fig. 8 Photographs of a C. aurigans scarab taken with incident linearly polarized light and with a linear polarizer between the illuminated cuticle and the camera, and according to the following setups: (a) vertical polarization (NS) and horizontal polarizer (EW), (b) vertical polarization and vertical polarizer, (c) horizontal polarization and horizontal polarizer, and (d) horizontal polarization and vertical polarizer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y= λ 1 λ 2 R(λ) I S (λ) y ¯ (λ)dλ λ 1 λ 2 I S (λ) y ¯ (λ)dλ ,

Metrics