Abstract

We measured the height of Pd microdisks during H2 exposure using epi-illumination diffraction phase microscopy, a quantitative phase imaging technique for capturing nanoscale dynamics in situ. From these microdisk height measurements, we extracted the axial expansion coefficient as a function of H2 concentration as well as image sequences that show the instantaneous rate of axial expansion in a spatially and temporally resolved manner. Quantifying these two parameters is important in modeling Pd-based H2 sensors. For H2 concentrations below 0.5%, i.e. an order of magnitude below the lower explosive limit, the axial expansion coefficient followed the Freundlich distribution: Δh(c) = 1.28 c0.51 where Δh is the percentage change in height of the Pd microdisk and c is the percent concentration of H2 in N2. The fit agrees well with the anticipated square root dependence for diatomic gas.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]

Chris Edwards, Renjie Zhou, Suk-Won Hwang, Steven J. McKeown, Kaiyuan Wang, Basanta Bhaduri, Raman Ganti, Peter J. Yunker, Arjun G. Yodh, John A. Rogers, Lynford L. Goddard, and Gabriel Popescu
Appl. Opt. 53(27) G33-G43 (2014)

A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film

Ai Hosoki, Michiko Nishiyama, Hirotaka Igawa, Atsushi Seki, and Kazuhiro Watanabe
Opt. Express 22(15) 18556-18563 (2014)

Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas
Appl. Opt. 54(35) 10342-10348 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
    [Crossref]
  2. B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
    [Crossref]
  3. B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
    [Crossref]
  4. M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
    [Crossref]
  5. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
    [Crossref]
  6. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [Crossref] [PubMed]
  7. S. McKeown and L. Goddard, “Hydrogen detection using polarization diversity via sub-wavelength fiber aperture,” IEEE Photonics 4(5), 1752–1761 (2012).
    [Crossref]
  8. A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-on-Fiber Technology (Springer, 2015).
  9. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  10. A. Mandelis and J. A. Garcia, “Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics,” Sens. Actuators B Chem. 49(3), 258–267 (1998).
    [Crossref]
  11. M. Raval, S. McKeown, A. Arbabi, and L. L. Goddard, “Palladium Based Fabry-Pérot Etalons for Hydrogen Sensing,” (Optical Society of America2012), p. STh2B.5.
  12. I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
    [Crossref]
  13. T. Flanagan and W. A. Oates, “The pallaium-hydrogen system,” Annu. Rev. Mater. Sci. 21(1), 269–304 (1991).
    [Crossref]
  14. B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
    [Crossref]
  15. T. N. Veziroğlu and S. Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manage. 49(7), 1820–1831 (2008).
    [Crossref]
  16. E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).
  17. M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sens. Actuators B Chem. 123(1), 101–106 (2007).
    [Crossref]
  18. F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
    [Crossref] [PubMed]
  19. N. Krishna Mohan and P. K. Rastogi, “Recent devlopments in interferometry for microsystems metrology,” Opt. Lasers Eng. 47(2), 199–202 (2009).
    [Crossref]
  20. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
    [Crossref]
  21. G. Popescu, ed., Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  22. C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited],” Appl. Opt. 53(27), G33–G43 (2014).
    [Crossref] [PubMed]
  23. C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21(11), 13547–13554 (2013).
    [Crossref] [PubMed]
  24. C. Edwards, A. Arbabi, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the non-uniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Submitted (2014).
  25. R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
    [Crossref] [PubMed]
  26. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
    [Crossref]
  27. H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
    [Crossref] [PubMed]
  28. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  29. C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39(21), 6162–6165 (2014).
    [Crossref] [PubMed]
  30. S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
    [Crossref]
  31. Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
    [Crossref]
  32. T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
    [Crossref]

2014 (3)

2013 (4)

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21(11), 13547–13554 (2013).
[Crossref] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
[Crossref]

2012 (4)

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

S. McKeown and L. Goddard, “Hydrogen detection using polarization diversity via sub-wavelength fiber aperture,” IEEE Photonics 4(5), 1752–1761 (2012).
[Crossref]

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

2011 (3)

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

2009 (2)

F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
[Crossref] [PubMed]

N. Krishna Mohan and P. K. Rastogi, “Recent devlopments in interferometry for microsystems metrology,” Opt. Lasers Eng. 47(2), 199–202 (2009).
[Crossref]

2008 (2)

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

T. N. Veziroğlu and S. Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manage. 49(7), 1820–1831 (2008).
[Crossref]

2007 (1)

M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sens. Actuators B Chem. 123(1), 101–106 (2007).
[Crossref]

2005 (1)

2004 (1)

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

1998 (1)

A. Mandelis and J. A. Garcia, “Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics,” Sens. Actuators B Chem. 49(3), 258–267 (1998).
[Crossref]

1996 (1)

Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
[Crossref]

1994 (1)

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[Crossref]

1991 (1)

T. Flanagan and W. A. Oates, “The pallaium-hydrogen system,” Annu. Rev. Mater. Sci. 21(1), 269–304 (1991).
[Crossref]

1988 (1)

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

1984 (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

1978 (1)

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Alefeld, G.

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Arbabi, A.

B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
[Crossref]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bhaduri, B.

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Brodowski, H.

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Brown, S. A.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Butler, M. A.

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[Crossref]

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

Choquette, K. D.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

Coelho, L.

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

Cox, T.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Debnath, S. K.

Eastman, J. A.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Edwards, C.

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited],” Appl. Opt. 53(27), G33–G43 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
[Crossref]

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39(21), 6162–6165 (2014).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21(11), 13547–13554 (2013).
[Crossref] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

Eleftheriadis, T.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Feng, Y.

M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sens. Actuators B Chem. 123(1), 101–106 (2007).
[Crossref]

Flanagan, T.

T. Flanagan and W. A. Oates, “The pallaium-hydrogen system,” Annu. Rev. Mater. Sci. 21(1), 269–304 (1991).
[Crossref]

Fong, D. D.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Frazao, O.

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

Fuoss, P. H.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Ganti, R.

Garcia, J. A.

A. Mandelis and J. A. Garcia, “Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics,” Sens. Actuators B Chem. 49(3), 258–267 (1998).
[Crossref]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Goddard, L.

S. McKeown and L. Goddard, “Hydrogen detection using polarization diversity via sub-wavelength fiber aperture,” IEEE Photonics 4(5), 1752–1761 (2012).
[Crossref]

Goddard, L. L.

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited],” Appl. Opt. 53(27), G33–G43 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
[Crossref]

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39(21), 6162–6165 (2014).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21(11), 13547–13554 (2013).
[Crossref] [PubMed]

B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

Griffin, B. G.

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39(21), 6162–6165 (2014).
[Crossref] [PubMed]

B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
[Crossref]

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

Hendy, S. C.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Hwang, S.-W.

Ingham, B.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Jain, I. P.

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

Kasten, A. M.

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

Kim, C.

Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
[Crossref]

Krishna Mohan, N.

N. Krishna Mohan and P. K. Rastogi, “Recent devlopments in interferometry for microsystems metrology,” Opt. Lasers Eng. 47(2), 199–202 (2009).
[Crossref]

Lassesson, A.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Leervad Pedersen, T. P.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Liesch, C.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Malcata, F. X.

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

Malhotra, L. K.

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

Mandelis, A.

A. Mandelis and J. A. Garcia, “Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics,” Sens. Actuators B Chem. 49(3), 258–267 (1998).
[Crossref]

McKeown, S.

S. McKeown and L. Goddard, “Hydrogen detection using polarization diversity via sub-wavelength fiber aperture,” IEEE Photonics 4(5), 1752–1761 (2012).
[Crossref]

McKeown, S. J.

Monzón-Hernández, D.

Morita, Y.

Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
[Crossref]

Nakamura, K.

Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
[Crossref]

Nguyen, T. H.

Oates, W. A.

T. Flanagan and W. A. Oates, “The pallaium-hydrogen system,” Annu. Rev. Mater. Sci. 21(1), 269–304 (1991).
[Crossref]

Park, Y.

Penner, R. M.

F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
[Crossref] [PubMed]

Pham, H.

Pham, H. V.

Popescu, G.

C. Edwards, B. Bhaduri, B. G. Griffin, L. L. Goddard, and G. Popescu, “Epi-illumination diffraction phase microscopy with white light,” Opt. Lett. 39(21), 6162–6165 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014).
[Crossref]

C. Edwards, R. Zhou, S.-W. Hwang, S. J. McKeown, K. Wang, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, J. A. Rogers, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited],” Appl. Opt. 53(27), G33–G43 (2014).
[Crossref] [PubMed]

H. V. Pham, C. Edwards, L. L. Goddard, and G. Popescu, “Fast phase reconstruction in white light diffraction phase microscopy,” Appl. Opt. 52(1), A97–A101 (2013).
[Crossref] [PubMed]

C. Edwards, K. Wang, R. Zhou, B. Bhaduri, G. Popescu, and L. L. Goddard, “Digital projection photochemical etching defines gray-scale features,” Opt. Express 21(11), 13547–13554 (2013).
[Crossref] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

Rastogi, P. K.

N. Krishna Mohan and P. K. Rastogi, “Recent devlopments in interferometry for microsystems metrology,” Opt. Lasers Eng. 47(2), 199–202 (2009).
[Crossref]

Rogers, J. A.

Ryan, M. P.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Sahin, S.

T. N. Veziroğlu and S. Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manage. 49(7), 1820–1831 (2008).
[Crossref]

Salinga, C.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Santos, J. L.

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

Silva, S. F.

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

Stevens, K. J.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Taggart, D. K.

F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
[Crossref] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Toney, M. F.

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Uppadhyay, K. S.

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

Veziroglu, T. N.

T. N. Veziroğlu and S. Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manage. 49(7), 1820–1831 (2008).
[Crossref]

Vijay, Y. K.

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

Villatoro, J.

Völkl, J.

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Wang, K.

Wang, M.

M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sens. Actuators B Chem. 123(1), 101–106 (2007).
[Crossref]

Weis, H.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Wicke, E.

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Wuttig, M.

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Yang, F.

F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
[Crossref] [PubMed]

Yodh, A. G.

Yunker, P. J.

Zhou, R.

Adv. Opt. Photon. (1)

Annu. Rev. Mater. Sci. (1)

T. Flanagan and W. A. Oates, “The pallaium-hydrogen system,” Annu. Rev. Mater. Sci. 21(1), 269–304 (1991).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

Energy Convers. Manage. (1)

T. N. Veziroğlu and S. Şahin, “21st Century’s energy: Hydrogen energy system,” Energy Convers. Manage. 49(7), 1820–1831 (2008).
[Crossref]

IEEE J Quantum Elect (1)

B. G. Griffin, A. Arbabi, A. M. Kasten, K. D. Choquette, and L. L. Goddard, “Hydrogen detection using a functionalized photonic crystal vertical cavity laser,” IEEE J Quantum Elect 48(2), 160–168 (2012).
[Crossref]

IEEE Photonics (1)

S. McKeown and L. Goddard, “Hydrogen detection using polarization diversity via sub-wavelength fiber aperture,” IEEE Photonics 4(5), 1752–1761 (2012).
[Crossref]

Int. J. Hydrogen Energy (1)

I. P. Jain, Y. K. Vijay, L. K. Malhotra, and K. S. Uppadhyay, “Hydrogen storage in thin film metal hydride—a review,” Int. J. Hydrogen Energy 13(1), 15–23 (1988).
[Crossref]

Light Sci Appl (1)

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl 1(9), e30 (2012).
[Crossref]

Nano Lett. (2)

F. Yang, D. K. Taggart, and R. M. Penner, “Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture,” Nano Lett. 9(5), 2177–2182 (2009).
[Crossref] [PubMed]

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett. 13(8), 3716–3721 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lasers Eng. (1)

N. Krishna Mohan and P. K. Rastogi, “Recent devlopments in interferometry for microsystems metrology,” Opt. Lasers Eng. 47(2), 199–202 (2009).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, and M. P. Ryan, “Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters,” Phys. Rev. B 78(24), 245408 (2008).
[Crossref]

Sens. Actuators B Chem. (5)

A. Mandelis and J. A. Garcia, “Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics,” Sens. Actuators B Chem. 49(3), 258–267 (1998).
[Crossref]

M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sens. Actuators B Chem. 123(1), 101–106 (2007).
[Crossref]

Y. Morita, K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B Chem. 33(1-3), 96–99 (1996).
[Crossref]

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B Chem. 22(2), 155–163 (1994).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Sensors Journal, IEEE (2)

S. F. Silva, L. Coelho, O. Frazao, J. L. Santos, and F. X. Malcata, “A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection,” Sensors Journal, IEEE 12(1), 93–102 (2012).
[Crossref]

B. G. Griffin, A. Arbabi, and L. L. Goddard, “Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors,” Sensors Journal, IEEE 13(8), 3098–3105 (2013).
[Crossref]

Thin Solid Films (1)

T. P. Leervad Pedersen, C. Liesch, C. Salinga, T. Eleftheriadis, H. Weis, and M. Wuttig, “Hydrogen-induced changes of mechanical stress and optical transmission in thin Pd films,” Thin Solid Films 458(1-2), 299–303 (2004).
[Crossref]

Top. Appl. Phys. (1)

E. Wicke, H. Brodowski, G. Alefeld, and J. Völkl, “Hydrogen in metals II,” Top. Appl. Phys. 29, 258 (1978).

Other (4)

M. Raval, S. McKeown, A. Arbabi, and L. L. Goddard, “Palladium Based Fabry-Pérot Etalons for Hydrogen Sensing,” (Optical Society of America2012), p. STh2B.5.

A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-on-Fiber Technology (Springer, 2015).

G. Popescu, ed., Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

C. Edwards, A. Arbabi, B. Bhaduri, R. Ganti, P. J. Yunker, A. G. Yodh, G. Popescu, and L. L. Goddard, “Measuring the non-uniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging,” Submitted (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. Epi-DPM was used to monitor height changes to the Pd microdisk sample housed in a flow chamber with H2 and N2 rates set via LabVIEW. Abbreviations: SMF, single mode fiber; FC, fiber collimator; CL, collector lens; OBJ, objective; TL, tube lens; L1/L2, lenses; V1/V2, valves; MFC, mass flow controller; REG, regulator; VAC, vacuum line.

Fig. 2
Fig. 2

Pd microdisk sample. (a) Schematic of 260 nm tall Pd microdisks on a quartz substrate and the 40 nm blanket deposition. (b) Bright-field image shows an edge of the blanket.

Fig. 3
Fig. 3

Differential height measurements during H2 exposure. (a) Height map of a Pd microdisk before H2 exposure using epi-DPM. (b) Stability of height measurement during N2 baseline run. (c) Average height change of the Pd microdisk. H2 was turned on to 0.4% at 30 min and turned off at 120 min. (d) Selected frames and their histograms for the local height change at various times indicated in (c). (e) Instantaneous expansion rate before exposure, during expansion, during recovery, and after recovery. All scale bars are 100 µm.

Fig. 4
Fig. 4

H2 induced height changes of a Pd microdisk. (a) Measured height change for different H2 concentration pulse tests. (b) Percent change in height, Δh, versus percent H2 concentration, c, with Freundlich fit: Δh(c) = k·cn, where k = 1.28 ± 0.06 and n = 0.51 ± 0.04.

Metrics