Abstract

Second Harmonic Generation (SHG) was used to observe the reversible formation of chiral molecular aggregates at the air-water interface. The aggregates were formed by the chiral bridged binaphthol derivative 1( + ) under lateral compression in a Langmuir trough. The S polarized output SHG intensity was measured as a function of the input polarization angle of the fundamental beam during several compression cycles of the molecular film. The chirality of the supramolecular aggregates was established from the non vanishing SHG intensities collected for the p and s input polarization angles. It is demonstrated that the formation of the chiral domains with compression is a reversible process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
    [Crossref] [PubMed]
  2. M. W. Hosseini, “Molecular tectonics: from molecular recognition of anions to molecular networks,” Coord. Chem. Rev. 240(1-2), 157–166 (2003).
    [Crossref]
  3. L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
    [Crossref]
  4. S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
    [Crossref] [PubMed]
  5. S. J. Lee and W. B. Lin, “Chiral metallocycles: rational synthesis and novel applications,” Acc. Chem. Res. 41(4), 521–537 (2008).
    [Crossref] [PubMed]
  6. J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
    [Crossref] [PubMed]
  7. M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
    [Crossref] [PubMed]
  8. G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
    [Crossref] [PubMed]
  9. S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
    [Crossref] [PubMed]
  10. A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
    [Crossref] [PubMed]
  11. N. Engheta and P. Pelet, “Modes in chirowaveguides,” Opt. Lett. 14(11), 593–595 (1989).
    [Crossref] [PubMed]
  12. Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
    [Crossref]
  13. X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
    [Crossref] [PubMed]
  14. R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
    [Crossref] [PubMed]
  15. J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
    [Crossref] [PubMed]
  16. G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
    [Crossref]
  17. E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
    [Crossref]
  18. M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013 (2004).
    [Crossref]
  19. C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
    [Crossref] [PubMed]
  20. S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
    [Crossref]
  21. F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
    [Crossref] [PubMed]
  22. E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
    [Crossref] [PubMed]
  23. G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
    [Crossref]
  24. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  25. Y. R. Shen, “Surface Second Harmonic Generation: A new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
    [Crossref]
  26. T. F. Heinz, Modern Problems in Condensed Matter Science, M. Agranovich and A.A. Maraddudin, eds. (North Holland, 1991).
  27. R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
    [Crossref]
  28. G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
    [Crossref]
  29. S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
    [Crossref]
  30. P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
    [Crossref]
  31. V. Mizrahi and J. E. Sipe, “Phenomenological treatment of surface second-harmonic generation,” J. Opt. Soc. Am. B 5(3), 660–667 (1988).
    [Crossref]
  32. W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
    [Crossref] [PubMed]
  33. G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
    [Crossref] [PubMed]
  34. C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
    [Crossref]
  35. E. Hatta, “Sequential Collapse Transitions in a Langmuir Monolayer,” Langmuir 20(10), 4059–4063 (2004).
    [Crossref] [PubMed]
  36. S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
    [Crossref]
  37. F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
    [Crossref]
  38. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
    [Crossref]
  39. P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
    [Crossref]

2014 (1)

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

2013 (2)

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

2012 (2)

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

2011 (2)

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

2010 (1)

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

2009 (6)

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[Crossref] [PubMed]

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

2008 (2)

S. J. Lee and W. B. Lin, “Chiral metallocycles: rational synthesis and novel applications,” Acc. Chem. Res. 41(4), 521–537 (2008).
[Crossref] [PubMed]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

2005 (1)

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

2004 (5)

E. Hatta, “Sequential Collapse Transitions in a Langmuir Monolayer,” Langmuir 20(10), 4059–4063 (2004).
[Crossref] [PubMed]

M. A. Kriech and J. C. Conboy, “Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces,” J. Opt. Soc. Am. B 21(5), 1013 (2004).
[Crossref]

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
[Crossref] [PubMed]

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

2003 (3)

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

M. W. Hosseini, “Molecular tectonics: from molecular recognition of anions to molecular networks,” Coord. Chem. Rev. 240(1-2), 157–166 (2003).
[Crossref]

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

2001 (2)

F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
[Crossref]

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

2000 (1)

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

1999 (1)

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

1996 (1)

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[Crossref]

1994 (2)

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[Crossref]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
[Crossref]

1993 (1)

C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
[Crossref]

1991 (1)

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

1989 (1)

1988 (1)

1986 (1)

Y. R. Shen, “Surface Second Harmonic Generation: A new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[Crossref]

Als-Nielsen, J.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Amabilino, D. B.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Arrachart, G.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

Bachelier, G.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

Baddeley, C. J.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Bai, C. L.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Benichou, E.

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

Bensalah-Ledoux, A.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Besson, F.

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

Bian, H. T.

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Brevet, P. F.

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[Crossref]

Brevet, P.-F.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

Brezesinski, G.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

Byers, J. D.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
[Crossref]

Camacho, L.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

Conboy, J. C.

Corn, R. M.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[Crossref]

Crego-Calama, M.

M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
[Crossref] [PubMed]

Cui, Y.

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

Dankers, P. Y. W.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

De Cat, I.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

De Feyter, S.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

de Jong, F.

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

de Jong, J. J. D.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

De Schryver, F. C.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Derouet, A.

Deutsch, M.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Diat, O.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

Duboisset, J.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

El Harfouch, Y.

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

Elemans, J. A. W.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

Engheta, N.

Feringa, B. L.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Ficheux, D.

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

Gassin, P. M.

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

Gesquière, A.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Giner-Casares, J. J.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

Guillin, Y.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Guo, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Guy, L.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Guy, S.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Hache, F.

F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
[Crossref]

Haq, S.

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

Hatta, E.

E. Hatta, “Sequential Collapse Transitions in a Langmuir Monolayer,” Langmuir 20(10), 4059–4063 (2004).
[Crossref] [PubMed]

Hicks, J. M.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
[Crossref]

Higgins, D. A.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[Crossref]

Hosseini, M. W.

M. W. Hosseini, “Molecular tectonics: from molecular recognition of anions to molecular networks,” Coord. Chem. Rev. 240(1-2), 157–166 (2003).
[Crossref]

Huang, X.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Humblot, V.

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

Huskens, J.

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

Jacquemain, D.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Jansen, A. P. J.

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

Jiang, S.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Jimenez-Millán, E.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

Jiménez-Millán, E.

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

Jonin, C.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

Kang, S. Z.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Kellogg, R. M.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Kjaer, K.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Kooijman, H.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

Kriech, M. A.

Lahav, M.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Lambert, A.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Lascoux, N.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

Lee, S. J.

S. J. Lee and W. B. Lin, “Chiral metallocycles: rational synthesis and novel applications,” Acc. Chem. Res. 41(4), 521–537 (2008).
[Crossref] [PubMed]

Leiserowitz, L.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Leveiller, F.

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Li, C.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Li, S. S.

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

Lin, W. B.

S. J. Lee and W. B. Lin, “Chiral metallocycles: rational synthesis and novel applications,” Acc. Chem. Res. 41(4), 521–537 (2008).
[Crossref] [PubMed]

Liu, M.

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Liu, N.

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

Liu, Y. H.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Lorenzo, M. O.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Lu, J.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Lucas, L. N.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Martin-Gassin, G.

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

Martín-Romero, M. T.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

Matar, G.

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

Mateos-Timoneda, M. A.

M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
[Crossref] [PubMed]

McFate, C.

C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
[Crossref]

Meijer, E. W.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

Mesnil, H.

F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
[Crossref]

Mizrahi, V.

Mulatier, J. C.

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Muñoz, E.

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

Muryn, C.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Nasir, M. N.

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

Northrop, B. H.

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

Olmsted, J.

C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
[Crossref]

Pelet, P.

Pellet-Rostaing, S.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

Prins, L. J.

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

Rao, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

Raval, R.

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[Crossref] [PubMed]

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Reinhoudt, D. N.

M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
[Crossref] [PubMed]

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

Rubia-Payá, C.

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

Russier-Antoine, I.

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

E. Benichou, A. Derouet, I. Russier-Antoine, C. Jonin, N. Lascoux, M. Liu, and P. F. Brevet, “Supramolecular chirality at the air/water interface,” Opt. Mater. Express 1(1), 17 (2011).
[Crossref]

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

Schanne-Klein, M. C.

F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Surface Second Harmonic Generation: A new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[Crossref]

Sijbesma, R. P.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

Sipe, J. E.

Spek, A. L.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

Stang, P. J.

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

ten Cate, A. T.

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

Timmerman, P.

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

van Esch, J. H.

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

Veciana, J.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Wan, L. J.

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Wang, C.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Wang, H.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

Wang, H. F.

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Wang, X.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Ward, D.

C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
[Crossref]

Wurst, K.

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Xu, H.

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

Xu, S. L.

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Xu, Y.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

Xu, Y. Y.

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Xuan, W. M.

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

Yee, H. I.

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
[Crossref]

Yuan, G. Z.

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

Yuan, Q. H.

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

Zhang, B.

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

Zhang, W. K.

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Zheng, D.

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

Zheng, D. S.

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

Zhu, C. F.

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

Acc. Chem. Res. (2)

S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, “Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization,” Acc. Chem. Res. 42(2), 249–259 (2009).
[Crossref] [PubMed]

S. J. Lee and W. B. Lin, “Chiral metallocycles: rational synthesis and novel applications,” Acc. Chem. Res. 41(4), 521–537 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

S. De Feyter, A. Gesquière, K. Wurst, D. B. Amabilino, J. Veciana, and F. C. De Schryver, “Homo- and heterochiral supramolecular tapes from achiral, enantiiopure, and racemic promesogenic formamides: expression of molecular chirality in two and three dimensions,” Angew. Chem. Int. Ed. 40(17), 3217–3220 (2001).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. R. Shen, “Surface Second Harmonic Generation: A new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986).
[Crossref]

Chem. Phys. Lett. (1)

G. Matar, J. Duboisset, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, D. Ficheux, P.-F. Brevet, and F. Besson, “Second harmonic generation: a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide,” Chem. Phys. Lett. 500(1–3), 161–166 (2010).
[Crossref]

Chem. Rev. (1)

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev. 94(1), 107–125 (1994).
[Crossref]

Chem. Soc. Rev. (3)

M. A. Mateos-Timoneda, M. Crego-Calama, and D. N. Reinhoudt, “Supramolecular chirality of self-assembled systems in solution,” Chem. Soc. Rev. 33(6), 363–372 (2004).
[Crossref] [PubMed]

R. Raval, “Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques,” Chem. Soc. Rev. 38(3), 707–721 (2009).
[Crossref] [PubMed]

J. A. W. Elemans, I. De Cat, H. Xu, and S. De Feyter, “Two-dimensional chirality at liquid-solid interfaces,” Chem. Soc. Rev. 38(3), 722–736 (2009).
[Crossref] [PubMed]

Chemistry (1)

G. Z. Yuan, C. F. Zhu, W. M. Xuan, and Y. Cui, “Enantioselective recognition and separation by a homochiral porous lamellar solid based on unsymmetrical schiff base metal complexes,” Chemistry 15(26), 6428–6434 (2009).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

M. W. Hosseini, “Molecular tectonics: from molecular recognition of anions to molecular networks,” Coord. Chem. Rev. 240(1-2), 157–166 (2003).
[Crossref]

J. Am. Chem. Soc. (2)

A. T. ten Cate, P. Y. W. Dankers, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, “Enantioselective cyclization of racemic supramolecular polymers,” J. Am. Chem. Soc. 125(23), 6860–6861 (2003).
[Crossref] [PubMed]

X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, and M. Liu, “Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid,” J. Am. Chem. Soc. 126(5), 1322–1323 (2004).
[Crossref] [PubMed]

J. Chem. Phys. (4)

W. K. Zhang, D. S. Zheng, Y. Y. Xu, H. T. Bian, Y. Guo, and H. F. Wang, “Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution,” J. Chem. Phys. 123(22), 224713 (2005).
[Crossref] [PubMed]

G. Matar, E. Benichou, M. N. Nasir, Y. El Harfouch, P. F. Brevet, and F. Besson, “Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces,” J. Chem. Phys. 139(22), 225105 (2013).
[Crossref] [PubMed]

F. Hache, H. Mesnil, and M. C. Schanne-Klein, “Application of classical models of chirality to surface second harmonic generation,” J. Chem. Phys. 115(14), 6707 (2001).
[Crossref]

J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994).
[Crossref]

J. Chem. Soc., Faraday Trans. (1)

P. F. Brevet, “Phenomenological three-layer model for surface second-harmonic generation at the interface between two centrosymmetric media,” J. Chem. Soc., Faraday Trans. 92(22), 4547–4554 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (4)

Y. Xu, Y. Rao, D. Zheng, Y. Guo, M. Liu, and H. Wang, “Inhomogeneous and spontaneous formation of chirality in the Langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism,” J. Phys. Chem. C 113(10), 4088–4098 (2009).
[Crossref]

G. Martin-Gassin, E. Benichou, G. Bachelier, I. Russier-Antoine, C. Jonin, and P. F. Brevet, “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation,” J. Phys. Chem. C 112(33), 12958–12965 (2008).
[Crossref]

G. Martin-Gassin, G. Arrachart, P. M. Gassin, N. Lascoux, I. Russier-Antoine, C. Jonin, E. Benichou, S. Pellet-Rostaing, O. Diat, and P.-F. Brevet, “Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface,” J. Phys. Chem. C 116(13), 7450–7456 (2012).
[Crossref]

P. M. Gassin, G. Martin-Gassin, E. Benichou, and P. F. Brevet, “Tracking molecular aggregates at a liquid interface by non linear correlation spectroscopy,” J. Phys. Chem. C 118(2), 1135–1141 (2014).
[Crossref]

Langmuir (4)

E. Jiménez-Millán, J. J. Giner-Casares, E. Muñoz, M. T. Martín-Romero, and L. Camacho, “Self-assembly of acridine orange into h-aggregates at the air/water interface: tuning of orientation of headgroup,” Langmuir 27(24), 14888–14899 (2011).
[Crossref] [PubMed]

C. McFate, D. Ward, and J. Olmsted, “Organized collapse of fatty acid monolayers,” Langmuir 9(4), 1036–1039 (1993).
[Crossref]

E. Hatta, “Sequential Collapse Transitions in a Langmuir Monolayer,” Langmuir 20(10), 4059–4063 (2004).
[Crossref] [PubMed]

C. Rubia-Payá, E. Jimenez-Millán, J. J. Giner-Casares, G. Brezesinski, M. T. Martín-Romero, and L. Camacho, “From two-dimensional to three-dimensional at the air/water interface: the self-aggregation of the acridine dye in mixed monolayers,” Langmuir 29(15), 4796–4805 (2013).
[Crossref] [PubMed]

Nat. Chem. (1)

S. Haq, N. Liu, V. Humblot, A. P. J. Jansen, and R. Raval, “Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces,” Nat. Chem. 1(5), 409–414 (2009).
[Crossref] [PubMed]

Nature (2)

L. J. Prins, J. Huskens, F. de Jong, P. Timmerman, and D. N. Reinhoudt, “Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly,” Nature 398(6727), 498–502 (1999).
[Crossref]

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Science (2)

J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, and B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004).
[Crossref] [PubMed]

F. Leveiller, D. Jacquemain, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjaer, and J. Als-Nielsen, “Crystallinity of the double layer of cadmium arachidate films at the water surface,” Science 252(5012), 1532–1536 (1991).
[Crossref] [PubMed]

Surf. Sci. Lett. (1)

S. L. Xu, S. Z. Kang, J. Lu, Y. H. Liu, C. Wang, L. J. Wan, and C. L. Bai, “Chiral discrimination in Langmuir and Langmuir–Blodgett film of axially chiral 1,1′-binaphthyl acid,” Surf. Sci. Lett. 527(1-3), 171 (2003).
[Crossref]

Thin Solid Films (1)

S. Guy, A. Bensalah-Ledoux, A. Lambert, Y. Guillin, L. Guy, and J. C. Mulatier, “Chiral organic thin films: How far pulsed laser deposition can conserve chirality,” Thin Solid Films 520(20), 6440–6445 (2012).
[Crossref]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

T. F. Heinz, Modern Problems in Condensed Matter Science, M. Agranovich and A.A. Maraddudin, eds. (North Holland, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the chiral binaphthol derivative 1( + ).

Fig. 2
Fig. 2

SHG intensity as a function of the input polarization angle for the S-, P- and 45-output polarizations obtained for the neat air-water interface. The solid lines correspond to the fit of the experimental data using Eq. (1).

Fig. 3
Fig. 3

Successive compressions recorded at 17°C for a 1( + ) monolayers at the air-water interface. The black line corresponds to the first compression with a slope rupture around 70 cm2. The following compressions are represented by the dashed lines. The slope rupture is shifted to about 66 cm2.

Fig. 4
Fig. 4

Theoretical S-Out SHG intensity as a function of the input polarization angle expected for a monolayer of chiral molecules at the air-water interface. The tensor elements χ e e m were removed two bring out the intrinsic chirality.

Fig. 5
Fig. 5

S-out SHG intensity as a function of the input polarization angle obtained for a 1( + ) monolayer formed at the air-water interface for a surface pressure of 1 mN/m. The gray dashed line corresponds to the fit of the experimental data using Eq. (2).

Fig. 6
Fig. 6

Time evolution of the surface pressure (black dashed line) and the susceptibility tensor element modulus (red continuous line) for successive isotherm cycles for γ = 90° and an S-out polarization configuration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I Γ ( γ ) | [ ( a 2 χ xxz eee + χ zxx eee a 3 + χ zzz eee a 4 ) cos 2 ( γ )+ a 5 χ zxx eee sin 2 ( γ ) ] cos 2 ( Γ )+[ a 1 χ xxz eee sin( 2γ ) ] sin 2 ( Γ ) | 2
I s ( γ ) | ( a 1 χ xxz eee + a 10 χ yxz eem + a 11 χ yzx eem )sin( 2γ )+( a 7 χ yxz eee + a 9 χ zxz eem ) cos 2 ( γ )+ a 8 χ xxz eem sin 2 ( γ ) | 2

Metrics