Abstract

Naturally occurring magnetic dipole resonances can be used as optical sources in metamaterials and optical nanostructures to engineer light emission with applications in energy harvesting, biological imaging, and other photonic devices. Here, we use energy-momentum spectroscopy to quantify the electric and magnetic dipole emission rates of near-infrared transitions in Dy3+ and Tm3+ doped Y2O3. Of these emission lines, we find that the overlapping 4F9/26F11/2 and 4F9/26H9/2 transitions in Dy3+ and the overlapping 1G43H5 and 3H43H6 transitions in Tm3+ exhibit the greatest MD emission and thus offer the most direct pathway for integration with magnetic modes in resonant nanostructures.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses

R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández- Navarro, and D. Munoz-Martin
Opt. Express 16(16) 11836-11846 (2008)

Spectroscopic study and Judd–Ofelt analysis of Pr3+-doped Zr–Ba–La–Al glasses in visible spectral range

Melinda Olivier, Jean-Louis Doualan, Virginie Nazabal, Patrice Camy, and Jean-Luc Adam
J. Opt. Soc. Am. B 30(8) 2032-2042 (2013)

Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic

M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar
Opt. Mater. Express 1(7) 1272-1285 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012).
    [Crossref]
  2. S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
    [Crossref]
  3. S. E. Yoca and P. Quinet, “Decay rates for radiative transitions in the Pr IV spectrum,” J. Phys. B–At. Mol. Opt.46, 145003 (2013).
    [Crossref]
  4. S. E. Yoca and P. Quinet, “Relativistic Hartree–Fock calculations of transition rates for allowed and forbidden lines in Nd IV,” J. Phys. B–At. Mol. Opt.47, 35002–35016 (2014).
    [Crossref]
  5. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
    [Crossref]
  6. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011).
    [Crossref] [PubMed]
  7. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
    [Crossref]
  8. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
    [Crossref] [PubMed]
  9. S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
    [Crossref] [PubMed]
  10. S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
    [Crossref] [PubMed]
  11. N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
    [Crossref]
  12. R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
    [Crossref]
  13. L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
    [Crossref] [PubMed]
  14. D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
    [Crossref]
  15. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
    [Crossref] [PubMed]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [Crossref] [PubMed]
  17. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
    [Crossref]
  18. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
    [Crossref] [PubMed]
  19. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
    [Crossref] [PubMed]
  20. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
    [Crossref]
  21. G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
    [Crossref]
  22. R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna, “Characterization and modeling of thulium: ZBLAN blue upconversion fiber lasers,” J. Opt. Soc. Am. B14, 1213–1218 (1997).
    [Crossref]
  23. C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
    [Crossref]
  24. A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
    [Crossref]
  25. F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev.104, 139–174 (2004).
    [Crossref] [PubMed]
  26. A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
    [Crossref]
  27. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
    [Crossref]
  28. H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
    [Crossref]
  29. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
    [Crossref]
  30. E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
    [Crossref] [PubMed]
  31. C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett.39, 3710–3713 (2014).
    [Crossref] [PubMed]
  32. C. M. Dodson, J. A. Kurvits, D. Li, and R. Zia, “Wide-angle energy-momentum spectroscopy,” Opt. Lett.39, 3927–3930 (2014).
    [Crossref] [PubMed]
  33. Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
    [Crossref]
  34. G. Kaur and S. B. Rai, “Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation,” J. Fluoresc.22, 475–483 (2012).
    [Crossref]
  35. D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
    [Crossref]
  36. P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
    [Crossref]
  37. S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
    [Crossref]
  38. F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
    [Crossref]
  39. G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
    [Crossref]
  40. G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
    [Crossref]
  41. D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
    [Crossref]
  42. R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
    [Crossref]
  43. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev.171, 283–291 (1968).
    [Crossref]
  44. C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
    [Crossref]
  45. I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
    [Crossref]
  46. W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
    [Crossref]
  47. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
    [Crossref]

2014 (7)

S. E. Yoca and P. Quinet, “Relativistic Hartree–Fock calculations of transition rates for allowed and forbidden lines in Nd IV,” J. Phys. B–At. Mol. Opt.47, 35002–35016 (2014).
[Crossref]

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
[Crossref]

C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett.39, 3710–3713 (2014).
[Crossref] [PubMed]

C. M. Dodson, J. A. Kurvits, D. Li, and R. Zia, “Wide-angle energy-momentum spectroscopy,” Opt. Lett.39, 3927–3930 (2014).
[Crossref] [PubMed]

2013 (5)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
[Crossref] [PubMed]

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

S. E. Yoca and P. Quinet, “Decay rates for radiative transitions in the Pr IV spectrum,” J. Phys. B–At. Mol. Opt.46, 145003 (2013).
[Crossref]

2012 (6)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

G. Kaur and S. B. Rai, “Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation,” J. Fluoresc.22, 475–483 (2012).
[Crossref]

S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
[Crossref]

2011 (5)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011).
[Crossref] [PubMed]

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

2010 (3)

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

2009 (3)

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

2007 (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[Crossref] [PubMed]

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

2005 (2)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

2004 (5)

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev.104, 139–174 (2004).
[Crossref] [PubMed]

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

2003 (2)

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

2000 (2)

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

1999 (1)

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

1997 (1)

1996 (1)

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

1988 (1)

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
[Crossref]

1968 (1)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev.171, 283–291 (1968).
[Crossref]

Abdeddaim, R.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
[Crossref]

Adam, J. L.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
[Crossref]

Aigouy, L.

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Almutairi, A.

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev.104, 139–174 (2004).
[Crossref] [PubMed]

Baba, M.

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Baida, F. I.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

Barber, P. R.

Barnakov, Y.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

Belleti, A.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Benamara, O.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Beregi, E.

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

Berthelot, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Bettinelli, M.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

Biner, D.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Boltasseva, A.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Bonod, N.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

Boudarham, G.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
[Crossref]

Bouzan, M. A.

Bovero, E.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Bowman, S. R.

S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
[Crossref]

Boyer, J.-C.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Bradley, W. M.

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Burr, G. W.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

Capobianco, J. A.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Carminati, R.

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Cavalli, E.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Cazé, A.

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Chan, E. M.

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Condon, N. J.

S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
[Crossref]

Cueff, S.

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

Da Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

da Silva, E. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Derom, S.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

des Francs, G. C.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
[Crossref] [PubMed]

Do Nascimento, R. F.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

Do Nascimento, V. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

Dodson, C. M.

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

C. M. Dodson, J. A. Kurvits, D. Li, and R. Zia, “Wide-angle energy-momentum spectroscopy,” Opt. Lett.39, 3927–3930 (2014).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012).
[Crossref]

Dominiak-Dzik, G.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

dos Santos, P. V.

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

Duan, X.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Durach, M.

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Faoro, R.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

Fischer, S.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Fischer, U. C.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

Frimmer, M.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
[Crossref] [PubMed]

Gargas, D. J.

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

Girard, C.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Golab, S.

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Goldschmidt, J. C.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

Grazyna Dominiak-Dzik, G.

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

Gredin, P.

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Grosjean, T.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

Gruber, J. B.

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

Guery, C.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
[Crossref]

Guyot, Y.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Hanna, D. C.

Haro-González, P.

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

Hayenga, W.

He, S.

Hermle, M.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Hong, Z.

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Huang, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Huber, T.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Hussain, R.

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

Ivanov, I. A.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Jiang, M.

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

Johnson, N. J. J.

Jurdyc, A. M.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Kalinnikov, V. T.

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

Karaveli, S.

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
[Crossref] [PubMed]

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011).
[Crossref] [PubMed]

Kaur, G.

G. Kaur and S. B. Rai, “Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation,” J. Fluoresc.22, 475–483 (2012).
[Crossref]

Keene, D.

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

Kehrli, M.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Khajavikhan, M.

Kildishev, A. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Koenderink, A. F.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Kovács, L.

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Kurvits, J. A.

Lantigua, C.

Li, D.

C. M. Dodson, J. A. Kurvits, D. Li, and R. Zia, “Wide-angle energy-momentum spectroscopy,” Opt. Lett.39, 3927–3930 (2014).
[Crossref] [PubMed]

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

Li, H.

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

Li, W. L.

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Li, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Liang, C.

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Liu, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Löper, P.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

Lucas, J.

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
[Crossref]

Lukasiewicz, T.

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Lüthy, W.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Magnani, N.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

Martín, I.

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

Martín, L.

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

McIntosh, B.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Merkle, L. D.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Milliron, D. J.

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

Mivelle, M.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

Moglia, F.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

Moncorgé, R.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Morris, P. J.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Mortier, M.

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Naik, G. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Ni, X.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Noginov, M. A.

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

Noginova, N.

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[Crossref] [PubMed]

O’Connor, S.

S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
[Crossref]

Palatnikov, M. N.

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

Parisi, D.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Paschotta, R.

Peng, J.

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Pillonnet, A.

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

Pinto, A.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Pisarska, J.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

Pisarski, W. A.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

Qu, Y.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Quinet, P.

S. E. Yoca and P. Quinet, “Relativistic Hartree–Fock calculations of transition rates for allowed and forbidden lines in Nd IV,” J. Phys. B–At. Mol. Opt.47, 35002–35016 (2014).
[Crossref]

S. E. Yoca and P. Quinet, “Decay rates for radiative transitions in the Pr IV spectrum,” J. Phys. B–At. Mol. Opt.46, 145003 (2013).
[Crossref]

Rai, S. B.

G. Kaur and S. B. Rai, “Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation,” J. Fluoresc.22, 475–483 (2012).
[Crossref]

Ribeiro, S. J. L.

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

Ryba-Romanowski, W.

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Sardar, D. K.

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Schuck, P. J.

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

Sersic, I.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

Shalaev, V. M.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Shcherbakov, I. A.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
[Crossref] [PubMed]

Sidorov, N. V.

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

Sokólska, I.

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Solarz, P.

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Speghini, A.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

Studenikin, P. A.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Swirkowicz, M.

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

Toncelli, A.

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Tonelli, M.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

Tropper, A. C.

Urbas, A.

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

Vella, J.

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

Verdun, H.

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Verhagen, E.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

Vetrone, F.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Wang, S.

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

Weber, H. P.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Weber, M. J.

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev.171, 283–291 (1968).
[Crossref]

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Weinstein, A. J.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
[Crossref] [PubMed]

Wyss, C. P.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Xiao, G.

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

Yoca, S. E.

S. E. Yoca and P. Quinet, “Relativistic Hartree–Fock calculations of transition rates for allowed and forbidden lines in Nd IV,” J. Phys. B–At. Mol. Opt.47, 35002–35016 (2014).
[Crossref]

S. E. Yoca and P. Quinet, “Decay rates for radiative transitions in the Pr IV spectrum,” J. Phys. B–At. Mol. Opt.46, 145003 (2013).
[Crossref]

Yow, R. M.

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

Zagumennyi, A. I.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Zandi, B.

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

Zavartsev, Y. D.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Zerrouk, A. F.

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

Zhang, H.

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Zhao, D.

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Zia, R.

C. M. Dodson, J. A. Kurvits, D. Li, and R. Zia, “Wide-angle energy-momentum spectroscopy,” Opt. Lett.39, 3927–3930 (2014).
[Crossref] [PubMed]

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
[Crossref] [PubMed]

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

ACS Nano (1)

S. Karaveli, S. Wang, G. Xiao, and R. Zia, “Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO,” ACS Nano7, 7165–7172 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Edit. (1)

H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells,” Angew. Chem. Int. Edit.49, 2865–2868 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B: Lasers Opt.103, 553–558 (2011).
[Crossref]

Appl. Phys. Lett. (2)

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Appl. Phys. Lett.104, 021117 (2014).
[Crossref]

A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. Da Costa, and V. B. Do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett.91, 091114 (2007).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev.104, 139–174 (2004).
[Crossref] [PubMed]

J. Alloys Compd. (1)

G. Dominiak-Dzik, P. Solarz, W. Ryba-Romanowski, E. Beregi, and L. Kovács, “Dysprosium-doped YAl3(BO3)4 (YAB) crystals: an investigation of radiative and non-radiative processes,” J. Alloys Compd.359, 51–58 (2003).
[Crossref]

J. Appl. Phys. (2)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108, 044912 (2010).
[Crossref]

A. S. Gouveia-Neto, E. B. da Costa, P. V. dos Santos, L. A. Bueno, and S. J. L. Ribeiro, “Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm,” J. Appl. Phys.94, 5678–5681 (2003).
[Crossref]

J. Fluoresc. (1)

G. Kaur and S. B. Rai, “Cool white light emission in dysprosium and salicylic acid doped poly vinyl alcohol film under UV excitation,” J. Fluoresc.22, 475–483 (2012).
[Crossref]

J. Lumin. (3)

D. K. Sardar, W. M. Bradley, R. M. Yow, J. B. Gruber, and B. Zandi, “Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host,” J. Lumin.106, 195–203 (2004).
[Crossref]

C. P. Wyss, M. Kehrli, T. Huber, P. J. Morris, W. Lüthy, H. P. Weber, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, I. A. Shcherbakov, and A. F. Zerrouk, “Excitation of the thulium 1G4 level in various crystal hosts,” J. Lumin.82, 137–144 (1999).
[Crossref]

C. Guery, J. L. Adam, and J. Lucas, “Optical properties of Tm3+ ions in indium-based fluoride glasses,” J. Lumin.42, 181–189 (1988).
[Crossref]

J. Mol. Struct. (1)

G. Dominiak-Dzik, W. Ryba-Romanowski, M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, “Dysprosium-doped LiNbO3 crystal. optical properties and effect of temperature on fluorescence dynamics,” J. Mol. Struct.704, 139–144 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B–At. Mol. Opt. (2)

S. E. Yoca and P. Quinet, “Decay rates for radiative transitions in the Pr IV spectrum,” J. Phys. B–At. Mol. Opt.46, 145003 (2013).
[Crossref]

S. E. Yoca and P. Quinet, “Relativistic Hartree–Fock calculations of transition rates for allowed and forbidden lines in Nd IV,” J. Phys. B–At. Mol. Opt.47, 35002–35016 (2014).
[Crossref]

J. Phys. Chem. B (1)

E. M. Chan, D. J. Gargas, P. J. Schuck, and D. J. Milliron, “Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: The case of NaYF4:Er3+/Tm3+ upconverting nanocrystals,” J. Phys. Chem. B116, 10561–10570 (2012).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

I. Sokólska, W. Ryba-Romanowski, S. Gołąb, M. Baba, M. Świrkowicz, and T. Łukasiewicz, “Spectroscopy of LiTaO3:Tm3+ crystals,” J. Phys. Chem. Solids61, 1573–1581 (2000).
[Crossref]

J. Phys. Condens. Matter (3)

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses,” J. Phys. Condens. Matter16, 6171 (2004).
[Crossref]

D. Parisi, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and A. Belleti, “Optical spectroscopy of BaY2F8:Dy3+,” J. Phys. Condens. Matter17, 2783–2790 (2005).
[Crossref]

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter21, 275501 (2009).
[Crossref]

Nano Lett. (2)

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11, 1009–1013 (2011).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 3927–3934 (2011).
[Crossref] [PubMed]

Nano letters (1)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano letters13, 2264–2269 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

S. Derom, A. Berthelot, A. Pillonnet, O. Benamara, A. M. Jurdyc, C. Girard, and G. C. des Francs, “Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles,” Nanotechnology24, 495704 (2013).
[Crossref]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals,” Nanotechnology15, 75 (2004).
[Crossref]

Nat. Commun. (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun.3, 979 (2012).
[Crossref] [PubMed]

Nature Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nature Mater.10, 968–973 (2011).
[Crossref]

Opt. Exp. (4)

S. R. Bowman, S. O’Connor, and N. J. Condon, “Diode pumped yellow dysprosium lasers,” Opt. Exp.20, 12906– 12911 (2012).
[Crossref]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Exp.17, 10767–10772 (2009).
[Crossref]

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Exp.21, 23087–23096 (2013).
[Crossref]

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Exp.22, 7744–7755 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, “Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions,” Opt. Mater.5, 127–136 (1996).
[Crossref]

Optical Materials (1)

P. Haro-González, L. Martín, I. Martín, G. Grazyna Dominiak-Dzik, and W. Ryba-Romanowski, “Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal,” Optical Materials33, 196–199 (2010).
[Crossref]

Phys. Rev. (1)

M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev.171, 283–291 (1968).
[Crossref]

Phys. Rev. B (3)

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances,” Phys. Rev. B85, 245432 (2012).
[Crossref]

D. Li, M. Jiang, S. Cueff, C. M. Dodson, S. Karaveli, and R. Zia, “Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide,” Phys. Rev. B89, 161409 (2014).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B86, 125102 (2012).
[Crossref]

Phys. Rev. Lett. (5)

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[Crossref] [PubMed]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009).
[Crossref]

L. Aigouy, A. Cazé, P. Gredin, M. Mortier, and R. Carminati, “Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale,” Phys. Rev. Lett.113, 076101 (2014).
[Crossref] [PubMed]

Synthetic Met. (1)

Z. Hong, W. L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, and D. Zhao, “White light emission from OEL devices based on organic dysprosium-complex,” Synthetic Met.111–112, 43– 45 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1:

Free ion energy level diagrams of Dy3+ and Tm3+. Note that introduction of ions into Y2O3 host slightly shifts the energy levels and transition wavelengths.

Fig. 2:
Fig. 2:

Energy-momentum spectra of 4F9/26H11/2 transition in Dy3+:Y2O3. (a) Polarized experimental data and (b) corresponding fits. (c) Representative polarized cross-sections of experimental data (solid) and theoretical fits (dashed) at 658.5 nm and 668.8 nm. Both wavelengths show emission that is 100% ED with 0% MD contribution. Vertical polarization is shown in blue and horizontal polarization is shown in red. (d) Total (black) counts for ED (red) and MD (blue) emission. (e) Intrinsic emission rates for ED (red) and MD (blue) emission. The wavelengths of each cross-section are marked with dashed black lines. The white arrows in (a,b) denote polarization.

Fig. 3:
Fig. 3:

Energy-momentum spectra of 4F9/26F11/2 and 4F9/26H9/2 transitions in Dy3+:Y2O3. (a) Polarized experimental data and (b) corresponding fits. (c) Representative polarized cross-sections of experimental data (solid) and theoretical fits (dashed) at 756.9 nm, 32.0% ED and 68.0% MD, and 758.2 nm, 24.3% ED and 75.7% MD. Vertical polarization is shown in blue and horizontal polarization is shown in red. (d) Total (black) counts for ED (red) and MD (blue) emission. (e) Intrinsic emission rates for ED (red) and MD (blue) emission. The wavelengths of each cross-section are marked with dashed black lines. The white arrows in (a,b) denote polarization.

Fig. 4:
Fig. 4:

Energy-momentum spectra of 1G43F4 transition in Tm3+:Y2O3. (a) Polarized experimental data and (b) corresponding fits. (c) Representative polarized cross-sections of experimental data (solid) and theoretical fits (dashed) at 654.1 nm, 78.2% ED and 21.8% MD, and 656.3 nm, 76.3% ED and 23.7% MD. Vertical polarization is shown in blue and horizontal polarization is shown in red. (d) Total (black) counts for ED (red) and MD (blue) emission. (e) Intrinsic emission rates for ED (red) and MD (blue) emission. The wavelengths of each cross-section are marked with dashed black lines. The white arrows in (a,b) denote polarization.

Fig. 5:
Fig. 5:

Energy-momentum spectra of 1G43H5 and 3H43H6 transitions in Tm3+:Y2O3. (a) Experimental data and (b) corresponding fits. (c) Vertically (blue) and horizontally (red) polarized cross-sections of experimental data (solid) and theoretical fits (dashed) at 797 nm, 61.2% ED and 38.8% MD, and 811 nm, 74.8% ED and 25.2% MD. (d) Total (black) counts for ED (red) and MD (blue) emission. (e) Intrinsic emission rates for ED (red) and MD (blue) emission. The wavelengths of each cross-section are marked with dashed black lines. The white arrows in (a,b) denote polarization.

Fig. 6:
Fig. 6:

Energy-momentum spectra of 1G43H4 and 3H53H6 transitions in Tm3+:Y2O3. (a) Experimental data and (b) corresponding fits. (c) Vertically (blue) and horizontally (red) polarized cross-sections of experimental data (solid) and theoretical fits (dashed) at 1208.6 nm, 83.6% ED and 16.4% MD, and 1271.5 nm, 86.3% ED and 13.7% MD. (d) Total (black) counts for ED (red) and MD (blue) emission. (e) Normalized emission rates for ED (red) and MD (blue) emission. The wavelengths of each cross-section are marked with dashed black lines. The white arrows in (a,b) denote polarization.

Tables (3)

Tables Icon

Table 1: Terminology for branching ratios and emission rates. The subscripts r and nr denote radiative and non-radiative decay, while i and f label the initial and final levels of a particular transition. Note that while we have listed aMD, the same relationships hold for aED with the substitution ΓMD → ΓED in the numerator.

Tables Icon

Table 2: Summary of MD emission in Dy3+:Y2O3. Here, i and f define the initial and final levels of the transition. τ denotes the excited level lifetime that is used in calculations of β. A = A n r 3, where A′ is the vacuum emission rate presented in [1] and nr=1.72 is the refractive index for the thin films of Y2O3. βif,MD is the fractional contribution of MD emission of all radiative decay from the i to f level and aMD is the relative percentage of MD emission for the specific transition(s). The spectral regions associated with each transition, or overlapping transitions, are defined by the plot ranges in Fig. 23.

Tables Icon

Table 3: Summary of MD emission in Tm3+:Y2O3. Here, i and f define the initial and final levels of the transition. τ denotes the excited level lifetime that is used in calculations of β. A = A n r 3, where A′ is the vacuum emission rate presented in [1] and nr=1.72 is the refractive index for the thin films of Y2O3. βif,MD is the fractional contribution of MD emission of all radiative decay from the i to f level and aMD is the relative percentage of MD emission for the specific transition(s). The spectral regions associated with each transition, or overlapping transitions, are defined by the plot ranges in Fig. 4 and 6.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β MD = τ f A MD , f .

Metrics