Abstract

Nowadays, one-phase and full-color phosphors have gained increasing interest. Here, we show that Mn-activated zinc gallogermanate, Zn1+xGa2-2xGexO4: Mn, x = 0 ~1, phosphors exhibit a broadly tunable luminescence from green to deep red with the substitution of Ga3+ by Ge4+. The green and deep red emissions are attributed to Mn2+ and Mn4+ occupying the tetrahedrally coordinated Zn2+ and octahedrally coordinated Ga3+ sites, respectively. The origin of the tunable luminescence is discussed. The present phosphors have potential uses in field emission displays and in vivo bio-imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bright green emission from the Mn2+-doped zinc gallogermanate phosphors

Xiaoqing Xu, Jing Ren, Guorong Chen, Deshuang Kong, Changjun Gu, Chunming Chen, and Linren Kong
Opt. Mater. Express 3(10) 1727-1732 (2013)

Origin of saturated green emission from europium in zinc thiogallate

Jonas J. Joos, Katleen Korthout, Sergey Nikitenko, Dirk Poelman, and Philippe F. Smet
Opt. Mater. Express 3(9) 1338-1350 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
    [Crossref]
  2. C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007).
    [Crossref]
  3. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
    [Crossref]
  4. L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
    [Crossref]
  5. Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
    [Crossref]
  6. A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
    [Crossref]
  7. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
    [Crossref] [PubMed]
  8. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
    [Crossref] [PubMed]
  9. M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
    [Crossref]
  10. X. Xu, J. Ren, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Bright green emission from the Mn2+-doped zinc gallogermanate phosphors,” Opt. Mater. Express3(10), 1727–1732 (2013).
    [Crossref]
  11. J. Ren, X. Xu, H. Zeng, G. Chen, D. Kong, C. Gu, C. Chen, Z. Liu and L. Kong, “Novel self-activated zinc gallogermanate phosphor: The origin of its photoluminescence,” J. Am. Ceram. Soc. (2014) (available online).
  12. L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
    [Crossref]
  13. C. F. Yu and P. Lin, “Manganese-activated luminescence in ZnGa2O4,” J. Appl. Phys.79(9), 7191–7197 (1996).
    [Crossref]
  14. K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).
  15. J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
    [Crossref]
  16. W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
    [Crossref]
  17. J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
    [Crossref]
  18. V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).
  19. Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
    [Crossref]

2014 (3)

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

2013 (2)

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

X. Xu, J. Ren, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Bright green emission from the Mn2+-doped zinc gallogermanate phosphors,” Opt. Mater. Express3(10), 1727–1732 (2013).
[Crossref]

2012 (2)

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

2011 (2)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[Crossref] [PubMed]

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

2007 (1)

C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007).
[Crossref]

2006 (1)

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

2005 (1)

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

2004 (3)

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

2003 (1)

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

1998 (1)

K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).

1996 (1)

C. F. Yu and P. Lin, “Manganese-activated luminescence in ZnGa2O4,” J. Appl. Phys.79(9), 7191–7197 (1996).
[Crossref]

Alahrache, S.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Allix, M.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Basavaraju, N.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Bessiere, A.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Bessière, A.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Binet, L.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Bos, A. J. J.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Boudjelthia, E. A. K.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Bradshaw, L. R.

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

Budai, J.

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

Chakradhar, R. P. S.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Chang, C. K.

C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007).
[Crossref]

Chen, C.

Chen, G.

X. Xu, J. Ren, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Bright green emission from the Mn2+-doped zinc gallogermanate phosphors,” Opt. Mater. Express3(10), 1727–1732 (2013).
[Crossref]

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

Chen, K. S.

K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).

Chen, T. M.

C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007).
[Crossref]

Chenu, S.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Choi, J. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

Chon, C. M.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Da, N.

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

Ding, J. W.

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Dong, G. P.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Dorenbos, P.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Fayon, F.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Gamelin, D. R.

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

Gopal, N. O.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Gourier, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Gourrier, D.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Gu, C.

Han, S. D.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Hauser, A.

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

Holloway, P. H.

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

Hsu, K. H.

K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).

Hwang, Y. H.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Im, W. B.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

Jang, H. S.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

Jeon, D. Y.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

Jeon, P. E.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

Jiang, L.

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Jung, H.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Kim, G. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

Kim, H. K.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Kim, J. S.

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Kim, S. M.

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

Kim, T. W.

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Kong, D.

Kong, L.

Kumar, V. R.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Lee, J. S.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

Li, Y.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Li, Y. Y.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Lin, P.

C. F. Yu and P. Lin, “Manganese-activated luminescence in ZnGa2O4,” J. Appl. Phys.79(9), 7191–7197 (1996).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, Y.

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[Crossref] [PubMed]

Ma, Z. J.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Massiot, D.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

McLaurin, E. J.

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

Mho, S. I.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Moon, H. S.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Narasimhulua, K. V.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Norton, D.

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[Crossref] [PubMed]

Park, H. L.

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Peng, M. Y.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Porcher, F.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Poumeyrol, T.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Priolkar, K. R.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Qiu, J. R.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Raoa, J. L.

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Ren, J.

Richard, C.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Sharafudeen, K.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Sharma, S. K.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Shu, W.

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Veron, E.

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

Viana, B.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

Williams, L. C.

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

Won, Y. H.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

Wondraczek, L.

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

Xiao, S.

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Xu, X.

Yan, Q.

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

Yang, M. R.

K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).

Yang, X.

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Yu, C. F.

C. F. Yu and P. Lin, “Manganese-activated luminescence in ZnGa2O4,” J. Appl. Phys.79(9), 7191–7197 (1996).
[Crossref]

Zhou, S. F.

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

Appl. Phys. Lett. (4)

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[Crossref]

C. K. Chang and T. M. Chen, “White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer,” Appl. Phys. Lett.90(16), 161901 (2007).
[Crossref]

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett.84(15), 2931–2933 (2004).
[Crossref]

J. S. Kim, J. S. Kim, T. W. Kim, S. M. Kim, and H. L. Park, “Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor,” Appl. Phys. Lett.86(9), 091912 (2005).
[Crossref]

Chem. Mater. (2)

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourrier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater.26(3), 1365–1373 (2014).
[Crossref]

M. Allix, S. Chenu, E. Veron, T. Poumeyrol, E. A. K. Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4,” Chem. Mater.25(9), 1600–1606 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

Q. Yan, Y. Liu, G. Chen, N. Da, and L. Wondraczek, “Photoluminescence of Mn2+centers in chalcohalide glasses,” J. Am. Ceram. Soc.94(3), 660–662 (2011).
[Crossref]

J. Appl. Phys. (1)

C. F. Yu and P. Lin, “Manganese-activated luminescence in ZnGa2O4,” J. Appl. Phys.79(9), 7191–7197 (1996).
[Crossref]

J. Electrochem. Soc. (1)

L. C. Williams, D. Norton, J. Budai, and P. H. Holloway, “Cathodoluminescence from thin film Zn2GeO4 : Mn phosphor grown by pulsed laser deposition,” J. Electrochem. Soc.151(8), H188–H191 (2004).
[Crossref]

J. Mater. Chem. C. (1)

Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “A strategy for developing near infrared long-persistentphosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example,” J. Mater. Chem. C.2(11), 2019–2027 (2014).
[Crossref]

J. Mater. Sci. (1)

K. H. Hsu, M. R. Yang, and K. S. Chen, “A study of ZnGa2O4 phosphor prepared by the solid method,” J. Mater. Sci.9, 283–288 (1998).

J. Phys. Chem. C (1)

L. R. Bradshaw, A. Hauser, E. J. McLaurin, and D. R. Gamelin, “Luminescence saturation via Mn2+-exciton cross relaxation in colloidal doped semiconductor nanocrystals,” J. Phys. Chem. C116(16), 9300–9310 (2012).
[Crossref]

J. Phys. Chem. Solids (1)

V. R. Kumar, K. V. Narasimhulua, N. O. Gopal, H. Jung, R. P. S. Chakradhar, and J. L. Raoa, “EPR, luminescence and IR studies of Mn activated ZnGa2O4 phosphor,” J. Phys. Chem. Solids65(7), 1367–1372 (2004).

Mater. Sci. Engineer. B. (1)

W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, “GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor,” Mater. Sci. Engineer. B.177(2), 274–277 (2012).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater.13(4), 418–426 (2014).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater.11(1), 58–63 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Solid State Commun. (1)

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, T. W. Kim, Y. H. Hwang, H. K. Kim, S. I. Mho, and S. D. Han, “Luminescence enhancement of ZnGa2O4:Mn2+ by Ge4+ and Li+ doping,” Solid State Commun.126(9), 515–518 (2003).
[Crossref]

Other (1)

J. Ren, X. Xu, H. Zeng, G. Chen, D. Kong, C. Gu, C. Chen, Z. Liu and L. Kong, “Novel self-activated zinc gallogermanate phosphor: The origin of its photoluminescence,” J. Am. Ceram. Soc. (2014) (available online).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 X-ray diffraction patterns of the samples Zn1+xGa2-2xGexO4:Mn, x = 0 ~1.
Fig. 2
Fig. 2 Difference reflection spectra obtained by subtracting the spectra of the Mn2+-doped samples from those of the non-doped ones.
Fig. 3
Fig. 3 Excitation (a) and emission (b) spectra of the samples Zn1+xGa2-2xGexO4:Mn, x = 0 ~1. The excitation wavelengths are 290 nm for the x = 0 sample and 350 nm for the rest of samples.
Fig. 4
Fig. 4 EPR spectra (a) of the Mn-activated (x = 0.1) samples prepared in the air (red line, enlarged by 10 times) and CO atmosphere (black line). EPR spectra (b) of the Mn-activated samples with x = 0 (black line) and x = 0.1 (red line, enlarged by 10 times).
Fig. 5
Fig. 5 Integrated intensities of the emissions at 532 and 680 nm as a function of Ge4+content (X). The insets are the digital photos of the samples (x = 0.1 and x = 1) being excited by UV lights in the dark.
Fig. 6
Fig. 6 Luminescence decay curves of the green (green curve) and red (red curve) emissions from the sample with x = 0.5 taken as an example. The insets indicate the different coordination environments of Mn2+ (four-fold coordinated) and Mn4+ (six-fold coordinated). The gray and violet balls represent the oxygen and Mn2+/Mn4+ ions, respectively.

Tables (2)

Tables Icon

Table 1 Nominal and measured compositions of the samples

Tables Icon

Table 2 Decay times of the samples monitored at 532 nm and 680 nm emissions.

Metrics