Abstract

We present nanophotonic light harvesting crystalline silicon (c-Si) thin films on glass exhibiting ten-fold transversely quasicrystalline lattice geometry on 6 x 8 mm2 area. The c-Si architectures with a nearest neighbor distance of 650 nm are fabricated by nanoimprinting the desired quasicrystalline geometry into sol-gel coated glass substrates followed by Si deposition of 240 nm to 270 nm thickness, self-organized solid phase crystallization and selective chemical etching. Broadband absorption measurements on these quasicrystalline-structured c-Si architectures yield a very significant improvement in light trapping in the near infrared regime and an enhanced light coupling due to a graded index effect in comparison to the unstructured sample. The average value of maximum achievable short circuit current density jsc, max of solar cells with such quasicrystalline-structured c-Si absorber geometry (19.3 mA/cm2) is more than double in comparison to the jsc, max of unstructured planar films of the same thickness (9.3 mA/cm2) and remains stable for light incident angles up to 60°. In comparison to a 320 nm thick c-Si film on textured ZnO:Al substrate as widely used for light trapping in amorphous-microcrystalline Si thin-film photovoltaics, still a 65% increased jsc, max is observable for the presented quasicrystalline c-Si structures. The nanophotonic light trapping efficiency of these transversely quasicrystalline c-Si nanoarchitectures is among the highest values for experimentally realized structures, revealing their promising influence for broadband and isotropic light trapping for economically viable and efficient ultra-thin solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures

Christina Bauer and Harald Giessen
Opt. Express 21(S3) A363-A371 (2013)

Angular dependence of light trapping in nanophotonic thin-film solar cells

Michael Smeets, Vladimir Smirnov, Karsten Bittkau, Matthias Meier, Reinhard Carius, Uwe Rau, and Ulrich W. Paetzold
Opt. Express 23(24) A1575-A1588 (2015)

Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells

Ting-Gang Chen, Peichen Yu, Yu-Lin Tsai, Chang-Hong Shen, Jia-Min Shieh, Min-An Tsai, and Hao-Chung Kuo
Opt. Express 20(S3) A412-A417 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Tao, “Inorganic photovoltaic solar cells: silicon and beyond,” Electrochem. Soc. Interface17, 30–35 (2008).
  2. S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
    [Crossref]
  3. C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
    [Crossref]
  4. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
    [Crossref] [PubMed]
  5. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  6. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  7. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20(S2), A224–A244 (2012).
    [Crossref] [PubMed]
  8. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
    [Crossref]
  9. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899 (1982).
    [Crossref]
  10. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  11. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
    [Crossref]
  12. J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
    [Crossref]
  13. V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
    [Crossref]
  14. B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
    [Crossref] [PubMed]
  15. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  16. P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
    [Crossref]
  17. C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express21(S3), A363–A371 (2013).
    [Crossref] [PubMed]
  18. E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
    [Crossref]
  19. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl.n/a (2013), doi:.
    [Crossref]
  20. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express21(S3), A460–A468 (2013).
    [Crossref] [PubMed]
  21. S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
    [Crossref]
  22. Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
    [Crossref]
  23. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
    [Crossref] [PubMed]
  24. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
    [Crossref]
  25. C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).
  26. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
    [Crossref]
  27. K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
    [Crossref]
  28. C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express22(S2), A542–A551 (2014).
    [Crossref] [PubMed]

2014 (2)

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express22(S2), A542–A551 (2014).
[Crossref] [PubMed]

2013 (8)

C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express21(S3), A363–A371 (2013).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express21(S3), A460–A468 (2013).
[Crossref] [PubMed]

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
[Crossref]

2012 (4)

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[Crossref] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20(S2), A224–A244 (2012).
[Crossref] [PubMed]

2011 (2)

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

2010 (3)

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[Crossref] [PubMed]

2009 (1)

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

2008 (2)

S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
[Crossref]

M. Tao, “Inorganic photovoltaic solar cells: silicon and beyond,” Electrochem. Soc. Interface17, 30–35 (2008).

2007 (3)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[Crossref]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

2006 (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

1982 (1)

Agrawal, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
[Crossref]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Amkreutz, D.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Andreani, L. C.

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Back, F.

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Bauer, C.

Becker, C.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Berginski, M.

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Boguslawski, M.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Bozzola, A.

Burger, S.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

Burresi, M.

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Chen, Z.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Chu, C.-W.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Denz, C.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Depauw, V.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Dore, J.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Egan, R.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Eggleston, B.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Eisenhauer, D.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

El Daif, O.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Evans, R.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Fahr, S.

S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Fan, Z.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Gall, S.

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Giessen, H.

Gordon, I.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

Green, M. A.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[Crossref]

Hammerschmidt, M.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Haschke, J.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hsu, M.-H.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Hua, B.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Huang, J.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Hüpkes, J.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Jogschies, L.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Joseph, J.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Jung, M.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Kim, K.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Klimm, C.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Krauss, T. F.

C. S. Schuster, A. Bozzola, L. C. Andreani, and T. F. Krauss, “How to assess light trapping structures versus a Lambertian Scatterer for solar cells?” Opt. Express22(S2), A542–A551 (2014).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Krc, J.

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

Kunz, O.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Kuo, H.-C.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Lederer, F.

S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
[Crossref]

Lee, K. Y.

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Lin, Q.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Liscidini, M.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20(S2), A224–A244 (2012).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl.n/a (2013), doi:.
[Crossref]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Liu, Y. K.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Lockau, D.

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Luxembourg, S. L.

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Merkel, J. J.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Muske, M.

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Nahata, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
[Crossref]

Omaki, K.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Ong, D.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Pakhuruddin, Z. M.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Plocica, P.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Poortmans, J.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

Pratesi, F.

Preidel, V.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Probst, J.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rech, B.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Riboli, F.

Rockstuhl, C.

S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
[Crossref]

Rose, P.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Rudigier-Voigt, E.

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

Ruske, F.

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Schubert, U.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Schuster, C. S.

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Soderstroma, T.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Sontheimer, T.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

Steffens, S.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Stiebig, H.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Tao, M.

M. Tao, “Inorganic photovoltaic solar cells: silicon and beyond,” Electrochem. Soc. Interface17, 30–35 (2008).

Teal, A.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Topic, M.

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

Trompoukis, C.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

Tsai, M.-A.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Tseng, P.-C.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Vardeny, Z. V.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
[Crossref]

Varlamov, S.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Vynck, K.

Wiersma, D. S.

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

Wyss, P.

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

Xavier, J.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

Yablonovitch, E.

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Young, T.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Yu, P.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Yun, J.

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

Zeman, M.

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

Zhang, Q.

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Zhou, J.

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

ACS Nano (1)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010).
[Crossref] [PubMed]

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[Crossref]

Appl. Phys. Lett. (5)

S. Fahr, C. Rockstuhl, and F. Lederer, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.92, 171114 (2008).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[Crossref]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett.101(10), 103901 (2012).
[Crossref]

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, “Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells,” Appl. Phys. Lett.94(15), 153501 (2009).
[Crossref]

K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, B. Rech, M. Berginski, and J. Hüpkes, “Temperature stability of ZnO: Al film properties for poly-Si thin-film devices,” Appl. Phys. Lett.91(24), 241911 (2007).
[Crossref]

Electrochem. Soc. Interface (1)

M. Tao, “Inorganic photovoltaic solar cells: silicon and beyond,” Electrochem. Soc. Interface17, 30–35 (2008).

J. Appl. Phys. (1)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (2)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Nanoscale (1)

B. Hua, Q. Lin, Q. Zhang, and Z. Fan, “Efficient photon management with nanostructures for photovoltaics,” Nanoscale5(15), 6627–6640 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics7(3), 177–187 (2013).
[Crossref]

Nature Comm. (1)

E. R. Martins, J. Li, Y. K. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nature Comm.4, 1 (2013).
[Crossref]

Opt. Express (4)

Org. Electron. (1)

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, and P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron.12(6), 886–890 (2011).
[Crossref]

Phys. Status Solidi RRL (1)

V. Preidel, D. Lockau, T. Sontheimer, F. Back, E. Rudigier-Voigt, B. Rech, and C. Becker, “Analysis of absorption enhancement in tailor‐made periodic polycrystalline silicon microarrays,” Phys. Status Solidi RRL7(12), 1045–1049 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Scientific Reports (1)

C. Becker, P. Wyss, D. Eisenhauer, J. Probst, V. Preidel, M. Hammerschmidt, and S. Burger, “5 x 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields,” Scientific Reports4, 5886 (2014).

Sol. Energy Mater. Sol. Cells (2)

S. Varlamov, J. Dore, R. Evans, D. Ong, B. Eggleston, O. Kunz, U. Schubert, T. Young, J. Huang, T. Soderstroma, K. Omaki, K. Kim, A. Teal, M. Jung, J. Yun, Z. M. Pakhuruddin, R. Egan, and M. A. Green, “Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon,” Sol. Energy Mater. Sol. Cells119, 246–255 (2013).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energy Mater. Sol. Cells119, 112–123 (2013).
[Crossref]

Other (1)

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl.n/a (2013), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of patterning of the sol-gel on glass substrate by UV nanoimprint-lithography.

Fig. 2
Fig. 2

Analysis of textured sol-gel coated glass substrate with transversely ten-fold symmetry quasicrystalline lattice geometry (Sample is coated with 15 nm of gold prior to analysis). a) SEM image of textured substrate with a nearest neighbor distance of 650 nm. Inset: A portion of the lattice magnified and with a 40° tilt. b) AFM image. c) Far field diffraction pattern with an incident beam λ = 532 nm. d) Diffraction pattern with an incident white light where the central order is blocked.

Fig. 3
Fig. 3

(a) Schematic of the process steps for the fabrication of c-Si nanocone-naoholes. (b) SEM image (30° tilted) of transversely quasicrystalline nanocone-nanoholes after etching. Inset Upper: 30° tilted image of quasicrystalline-structured nanodomes [Prior to etching]. Inset Bottom: Quasicrystalline-structured nanoholes [After the etching and subsequent removal of rods at the center]. c) and d) 30° tilted magnified image of c- Si nanocone-nanohole samples respectively with nearest neighbor distance 450 nm (c) and 650 nm (d).

Fig. 4
Fig. 4

Measured Absorption (at 8° incident angle) for the transversely ten-fold symmetry 240 nm thick polycrystalline Si thin film structured as quasicrystalline nanocone-nanoholes (QNcNh) with a white back reflector and antireflection coating in comparison to a reference planar c-Si thin film. (a) With neither back reflector nor antireflection coating (b) With white paint back reflector but without any antireflection coating (c) With white paint back reflector and antireflection coating of ~80 nm thick SiN.

Fig. 5
Fig. 5

a)-b) Measured angular absorption for the transversely ten-fold symmetry QNcNh structured in 240nm thick polycrystalline Si thin film with a white back reflector and antireflection coating. Light incident angle is varied from 4° to 60°. c) Estimated maximum achievable short circuit current densities (jsc, max) for the range of incident angles from 10 ° to 60 °.

Fig. 6
Fig. 6

a)-b) AFM images (a) textured sol-gel coated glass substrate with transversely ten-fold lattice symmetry and (b) sputtered wet-chemically textured ZnO:Al on glass c) 270 nm thick c- Si structured thin-film with a transversely ten-fold lattice symmetry QNcNh . d) ZnO:Al sample with 320 nm thick c-Si thin film. e) Optical absorption measurement for light (at 8° angle) incident from Si side of the samples with neither back reflector nor antireflection coating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

j sc,max =e 300nm 1100nm A(λ)S(λ) λ hc dλ

Metrics