Abstract

Principal thermo-optic coefficients (TOCs), dno/dT and dne/dT, are measured for Yb:CaGdAlO4 crystal, for the first time, to our knowledge. At the wavelength of ~1 μm, they equal –7.6 and –8.6 ( × 10−6 K−1), accordingly. Thermal coefficients of the optical path (TCOP) are determined for this crystal for the principal crystal cuts (a-cut and c-cut) and light polarizations (π or σ). Thermo-optic dispersion formulas are evaluated for both TOC and TCOP coefficients. Optical power of thermal lens is measured for diode-pumped a-cut Yb:CaGdAlO4; it is also calculated on the basis of measured material parameters. Thermal conductivity of CaGdAlO4 crystal is measured versus Yb concentration. The results indicate that a-cut Yb:CaGdAlO4 can provide really “athermal” behavior.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic dispersion formulas for YCOB and GdCOB laser host crystals

Pavel Loiko, Xavier Mateos, Yicheng Wang, Zhongben Pan, Konstantin Yumashev, Huaijin Zhang, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 5(5) 1089-1097 (2015)

Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal

Pavel Loiko, Shirin Ghanbari, Vladimir Matrosov, Konstantin Yumashev, and Arkady Major
Opt. Mater. Express 8(10) 3000-3006 (2018)

Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals

Pavel A. Loiko, Konstantin V. Yumashev, Vladimir N. Matrosov, and Nikolai V. Kuleshov
Appl. Opt. 52(4) 698-705 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
    [Crossref]
  2. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett.30(11), 1345–1347 (2005).
    [Crossref] [PubMed]
  3. F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
    [Crossref]
  4. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
    [Crossref] [PubMed]
  5. A. Guandalini, A. Greborio, and J. Aus der Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Presented at Solid State Lasers XXI: Technology and Devices, paper 8235–31 (2012).
  6. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
    [Crossref] [PubMed]
  7. K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
    [Crossref] [PubMed]
  8. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
    [Crossref] [PubMed]
  9. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express20(9), 10077–10082 (2012).
    [Crossref] [PubMed]
  10. P. Sevillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CALGO oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39, to be published (2014).
  11. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
    [Crossref] [PubMed]
  12. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett.38(19), 3842–3845 (2013).
    [Crossref] [PubMed]
  13. E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers,” Opt. Lett.38(20), 4131–4133 (2013).
    [Crossref] [PubMed]
  14. J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
    [Crossref] [PubMed]
  15. F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
    [PubMed]
  16. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3nd ed. (McGraw-Hill, 1987), Chap. 13.
  17. S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
    [Crossref]
  18. S. Biswal, S. P. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate,” Appl. Opt.44(15), 3093–3097 (2005).
    [Crossref] [PubMed]
  19. P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt.51(15), 2951–2957 (2012).
    [Crossref] [PubMed]
  20. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermooptic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B102(1), 117–122 (2011).
    [Crossref]
  21. P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
    [Crossref]
  22. J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances”, PhD Chimie Paritech, 2006.
  23. A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
    [Crossref]
  24. D. Li, X. Xu, H. Zhu, X. Chen, W. D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B28(7), 1650–1654 (2011).
    [Crossref]
  25. P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt.52(4), 698–705 (2013).
    [Crossref] [PubMed]
  26. P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
    [Crossref]
  27. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
    [Crossref]

2013 (7)

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt.52(4), 698–705 (2013).
[Crossref] [PubMed]

K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett.38(19), 3842–3845 (2013).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers,” Opt. Lett.38(20), 4131–4133 (2013).
[Crossref] [PubMed]

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (5)

D. Li, X. Xu, H. Zhu, X. Chen, W. D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B28(7), 1650–1654 (2011).
[Crossref]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
[Crossref] [PubMed]

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermooptic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B102(1), 117–122 (2011).
[Crossref]

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

2009 (1)

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

2007 (1)

2006 (2)

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

2005 (2)

2003 (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Abdou-Ahmed, M.

Agnesi, A.

Aguiló, M.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Aubry, N.

Aus der Au, J.

Balembois, F.

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
[Crossref]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

Beil, K.

Biswal, S.

Boudeile, J.

Bowman, S. R.

Caracciolo, E.

Carvajal, J. J.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Chen, X.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Cormier, E.

Delaigue, M.

Deppe, B.

Díaz, F.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

DidierJean, J.

Diebold, A.

Druon, F.

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
[Crossref] [PubMed]

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
[Crossref]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
[Crossref] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Eichler, H. J.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Emaury, F.

Filippov, V. V.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Georges, P.

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
[Crossref] [PubMed]

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
[Crossref] [PubMed]

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
[Crossref]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
[Crossref] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Goldner, P.

Golling, M.

Graf, T.

Greborio, A.

Guandalini, A.

Hanna, M.

Hönninger, C.

Jaffres, A.

Jaffrès, A.

Kaminskii, A. A.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Keller, U.

Kemnitzer, M.

Kisel, V.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

Kondratuk, N.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

Kränkel, C.

Kuleshov, N.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

Kuleshov, N. V.

Li, D.

Loiko, P.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

Loiko, P. A.

Loiseau, P.

Lucas Leclin, G.

Lux, O.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Ma, J.

Mateos, X.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Matrosov, V. N.

Mottay, E.

O’Connor, S. P.

Olivier, M.

Pavlyuk, A.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

Pavlyuk, A. A.

P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt.51(15), 2951–2957 (2012).
[Crossref] [PubMed]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermooptic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B102(1), 117–122 (2011).
[Crossref]

Petit, J.

Petrov, V.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Pirzio, F.

Pouysegur, J.

Pujol, M. C.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Rachkovskaya, G.

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

Reali, G.

Rhee, H.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Ricaud, S.

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Rytz, D.

Saraceno, C. J.

Schriber, C.

Shirakawa, A.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Südmeyer, T.

Suganuma, A.

Tan, W. D.

Tang, D.

Ueda, K.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Vatnik, S.

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

Viana, B.

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
[Crossref] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
[Crossref] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett.30(11), 1345–1347 (2005).
[Crossref] [PubMed]

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

Voss, A.

Weichelt, B.

Wentsch, K.

Wu, F.

Xia, C.

Xu, J.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

D. Li, X. Xu, H. Zhu, X. Chen, W. D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B28(7), 1650–1654 (2011).
[Crossref]

Xu, X.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

D. Li, X. Xu, H. Zhu, X. Chen, W. D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B28(7), 1650–1654 (2011).
[Crossref]

Yumashev, K.

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

Yumashev, K. V.

Zaouter, Y.

Zhang, J.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

D. Li, X. Xu, H. Zhu, X. Chen, W. D. Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B28(7), 1650–1654 (2011).
[Crossref]

Zhou, D.

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Zhu, H.

Appl. Opt. (3)

Appl. Phys. B (2)

S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B95(4), 653–656 (2009).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermooptic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B102(1), 117–122 (2011).
[Crossref]

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped in insulating crystals,” Appl. Phys. Lett.83(7), 1355–1357 (2003).
[Crossref]

IEEE Photonics Journal (1)

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal3(2), 268–273 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. A. Kaminskii, X. Xu, O. Lux, H. Rhee, H. J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, and J. Xu, “High-order stimulated Raman scattering in tetragonal CaYAlO4 crystal-host for Ln3+-lasant ions,” Laser Phys. Lett.9(4), 306–311 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (10)

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011).
[Crossref] [PubMed]

K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
[Crossref] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31(1), 119–121 (2006).
[Crossref] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett.32(14), 1962–1964 (2007).
[Crossref] [PubMed]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett.30(11), 1345–1347 (2005).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett.37(19), 3984–3986 (2012).
[Crossref] [PubMed]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett.38(19), 3842–3845 (2013).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers,” Opt. Lett.38(20), 4131–4133 (2013).
[Crossref] [PubMed]

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett.38(23), 5180–5183 (2013).
[Crossref] [PubMed]

F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, and P. Georges, “Magic mode switching in Yb:CaGdAlO4 laser under high pump power,” Opt. Lett.38(20), 4138–4141 (2013).
[PubMed]

Opt. Mater. (2)

P. Loiko, K. Yumashev, N. Kuleshov, G. Rachkovskaya, and A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb,” Opt. Mater.33(11), 1688–1694 (2011).
[Crossref]

P. Loiko, V. Kisel, N. Kondratuk, K. Yumashev, N. Kuleshov, and A. Pavlyuk, “14W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater.35(3), 582–585 (2013).
[Crossref]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[Crossref]

Other (4)

A. Guandalini, A. Greborio, and J. Aus der Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Presented at Solid State Lasers XXI: Technology and Devices, paper 8235–31 (2012).

P. Sevillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CALGO oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39, to be published (2014).

J. Petit, “Monocristaux dopés ytterbium et matériaux assemblés pour lasers de fortes puissances”, PhD Chimie Paritech, 2006.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3nd ed. (McGraw-Hill, 1987), Chap. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Set-up representing laser beam deviation method for the measurement of thermo-optic coefficients (a), drawings for the calculation of the deviation angle θ (b,c), see explanations in the text.
Fig. 2
Fig. 2 Dispersion of thermo-optic coefficients (TOCs), dno/dT and dne/dT, (a) and thermal coefficients of the optical path (TCOP), W = dn/dT + (n–1)α, (b) for Yb:CaGdAlO4 crystal: points are the experimental data, curves are their fitting.
Fig. 3
Fig. 3 (a) Sensitivity factor of thermal lens M vs. pump spot radius wp for an a-cut Yb:CaGdAlO4 crystal: points are the experimental data from [15], curves are the calculation based on measured material parameters; (b) Optical power of thermal lens vs. absorbed pump power for an a-cut 2at.%-doped Yb:CaGdAlO4 crystal: points are the experimental data, lines are their fitting for calculation of M-factors.
Fig. 4
Fig. 4 Thermal conductivity versus doping concentration of Yb for Yb:CaGdAlO4 crystal. Different curves represent the theoretical evolution considering various partial substitution of Gd and Ca by Yb: Gd100 means that Yb only substitute Gd, GdX means that Yb is replacing X% of Gd ions and 1-X% of Ca ions. The points are the experimental results. The line represents the difference between the nominal doping rate (higher number) to the actual one (lower number) measured by chemical analysis of the crystal.
Fig. 5
Fig. 5 Temperature elevation for 2%-Yb:CALGO with different orientations and pumping polarizations. The last column illustrates the thermal anisotropy.

Tables (3)

Tables Icon

Table 1 Expansion Coefficients in the Thermo-Optic Dispersion Formulas for 5at%Yb:CaGdAlO4 Laser Crystal

Tables Icon

Table 2 Thermal Expansion Coefficients Along a and c Axes [10−6 K−1] for CaRAlO4 Crystals

Tables Icon

Table 3 Principal TOC and TCOP [10−6 K−1] for Yb:CaGdAlO4 Laser Crystal at 1.03 μm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t 1 = (L+ΔL)(n+Δn)/c,
t 2 =Ln/c+ΔL/c,
W=dn/dT+(n1)α= Δx L scr H L( T h T c ) ,
d n d T ( λ ) = A 0 + A 1 λ 2 + A 2 λ 4 + A 3 λ 6 .
κ= 1 π a 0 2 k B ν κ 0 δ Atan( π a 0 κ 0 δ 2 k B ν ),
δ= i c i ( M i M M ) 2 .

Metrics