Abstract

Many techniques have been suggested and investigated for the microlens array fabrication in three dimensional structures. We present the fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser. The three dimensional microlenticular array mold is surface-machined on a fused silica plate by a femtosecond laser and polished with a CO2 laser. The CO2 laser treatment process can be customized to obtain a smooth surface. To evaluate the performance of the fabricated glass mold, we replicated a PDMS microlenticular lens arrays from the fabricated glass micro lenticular array mold.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Femtosecond laser micromachining of fused silica molds

Frédéric Madani-Grasset and Yves Bellouard
Opt. Express 18(21) 21826-21840 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express15(8), 4523–4529 (2007).
    [Crossref] [PubMed]
  2. C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
    [Crossref]
  3. V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, F. Carcenac, H. Ottevaere, and H. Thienpont, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express15(11), 6900–6907 (2007).
    [Crossref] [PubMed]
  4. S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
    [Crossref]
  5. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
    [Crossref]
  6. P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
    [Crossref]
  7. S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
    [Crossref]
  8. I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
    [Crossref]
  9. C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
    [Crossref]
  10. M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
    [Crossref]
  11. H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).
  12. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
    [Crossref]

2013 (2)

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

2012 (2)

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

2009 (1)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

2007 (3)

2006 (1)

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

2005 (1)

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

2004 (1)

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

1997 (1)

M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
[Crossref]

Akatay, A.

Bardinal, V.

Camps, T.

Carcenac, F.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Chang, F. Y.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Chang, W. C.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Chen, J. S.

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Cheng, C. W.

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

Conedera, V.

Daran, E.

Deng, Z.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Ding, X.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Doucet, J. B.

Fan, Z.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

Fukuhara, M.

M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
[Crossref]

Goto, H.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
[Crossref]

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

He, H.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Huang, H. W.

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Jung, D.

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

Kawaguchi, Y.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Kim, C.

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Kurosaki, R.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Lee, H.

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Leïchlé, T.

Levallois, C.

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Maeda, R.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
[Crossref]

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

Narazaki, A.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Niino, H.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Noh, Y. C.

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Ottevaere, H.

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

Sanpei, A.

M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
[Crossref]

Sato, T.

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

Shao, J.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Shibuki, K.

M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
[Crossref]

Shih, C. J.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Sohn, I. B.

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Takahashi, M.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
[Crossref]

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

Thienpont, H.

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Urey, H.

Vergnenègre, C.

Wan, P. N.

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

Wang, H. C.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Wei, C.

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

Yeh, C. H.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Youn, S. W.

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
[Crossref]

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

Young, H. T.

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process.97(4), 751–757 (2009).
[Crossref]

H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, and Y. Kawaguchi, “Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method,” Appl. Phys., A Mater. Sci. Process.79(4–6), 827–828 (2004).

J. Mater. Process. Technol. (1)

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques,” J. Mater. Process. Technol.187–188, 326–330 (2007).
[Crossref]

J. Mater. Sci. (1)

M. Fukuhara, A. Sanpei, and K. Shibuki, “Low temperature-elastic moduli, debye temperature and internal dilational and shear frictions of fused quartz,” J. Mater. Sci.32(5), 1207–1211 (1997).
[Crossref]

J. Micromech. Microeng. (1)

C. H. Yeh, C. J. Shih, H. C. Wang, F. Y. Chang, H. T. Young, and W. C. Chang, “Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process,” J. Micromech. Microeng.22(9), 095021 (2012).
[Crossref]

Journal of Laser Micro Nanoengineering. (1)

P. N. Wan, C. W. Cheng, H. W. Huang, and J. S. Chen, “Fabrication of microstructure arrays on photosensitive glass by femtosecond laser,” Journal of Laser Micro Nanoengineering.7(1), 122–125 (2012).
[Crossref]

Laser Phys. Lett. (1)

I. B. Sohn, H. Lee, D. Jung, Y. C. Noh, and C. Kim, “Fabrication of a bi-directional firing multimode fiber using a high repetition rate femtosecond laser and a CO2 laser,” Laser Phys. Lett.10(10), 106101 (2013).
[Crossref]

Microelectron. Eng. (1)

S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, “Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining,” Microelectron. Eng.83(11–12), 2482–2492 (2006).
[Crossref]

Opt. Eng. (1)

C. Wei, H. He, Z. Deng, J. Shao, and Z. Fan, “Study of thermal behaviors in CO2 laser irradiated glass,” Opt. Eng.44(4), 044202 (2005).
[Crossref]

Opt. Express (2)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533(1), 1–31 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the femtosecond laser system and (b) details of the scanning scheme for the V-shaped grooves.
Fig. 2
Fig. 2 SEM image of the Fused silica glass microstructured using a femtosecond laser.
Fig. 3
Fig. 3 (a) Schematic diagram of the CO2 laser system and (b) details of the scanning scheme for the post-process.
Fig. 4
Fig. 4 SEM image of the microlenticular lens with the fused silica glass.
Fig. 5
Fig. 5 (a) Schematic diagram of the focus ability measurement and focal plane images of (b) 2cycles CO2 laser treated glass mold and (c) 6cycles CO2 laser treated glass mold.
Fig. 6
Fig. 6 Schematic diagram of the replication process. Replication of a polymer mold from the hard fused silica mold (a-e), Replication of a polymer microlenticular lens array from the polymer mold (f-i).
Fig. 7
Fig. 7 SEM image of the PDMS soft molds (a-d) and the micro lenticular lens array with PDMS (e-f). (a) Replicated PDMS soft mold from 2-cycle-treated glass mold. (b) Cross-sectional image of replicated PDMS soft mold from 2-cycle-treated glass mold. (c) Replicated PDMS soft mold from 6-cycle-treated glass mold. (d) Cross-sectional image of replicated PDMS soft mold from 6-cycle-treated glass mold. (e) Replicated PDMS micro lenticular lens array from 2-cycle PDMS soft mold. (f) Cross-sectional image of replicated PDMS micro lenticular lens array from 2-cycle PDMS soft mold. (g) Replicated PDMS micro lenticular lens array from 2-cycle PDMS soft mold. (h) Cross-sectional image of replicated PDMS micro lenticular lens array from 2-cycle PDMS soft mold.

Metrics